SEMILOCAL CONVERGENCE OF A STIRLING-LIKE METHOD IN BANACH SPACES

2010 ◽  
Vol 07 (02) ◽  
pp. 215-228 ◽  
Author(s):  
S. K. PARHI ◽  
D. K. GUPTA

The aim of this paper is to establish the semilocal convergence of a third order Stirling–like method employed for solving nonlinear equations in Banach spaces by using the first Fréchet derivative, which satisfies the Lipschitz continuity condition. This makes it possible to avoid the evaluation of higher order Fréchet derivatives which are computationally difficult at times or may not even exist. The recurrence relations are used for convergence analysis. A convergence theorem is given for deriving error bounds and the domains of existence and uniqueness of solutions. The R order of the method is also established to be equal to 3. Finally, two numerical examples are worked out, and the results obtained are compared with the existing results. It is observed that our convergence analysis is more effective.

2020 ◽  
Vol 87 (1-2) ◽  
pp. 56
Author(s):  
Neha Gupta ◽  
J. P. Jaiswal

The motive of this article is to analyze the semilocal convergence of a well existing iterative method in the Banach spaces to get the solution of nonlinear equations. The condition, we assume that the nonlinear operator fulfills the Hölder continuity condition which is softer than the Lipschitz continuity and works on the problems in which either second order Frèchet derivative of the nonlinear operator is challenging to calculate or does not hold the Lipschitz condition. In the convergence theorem, the existence of the solution x<sup>*</sup> and its uniqueness along with prior error bound are established. Also, the <em>R</em>-order of convergence for this method is proved to be at least 4+3q. Two numerical examples are discussed to justify the included theoretical development followed by an error bound expression.


Author(s):  
D. R. Sahu ◽  
R. P. Agarwal ◽  
Y. J. Cho ◽  
V. K. Singh

In this paper, we study the third order semilocal convergence of the Newton-like method for finding the approximate solution of nonlinear operator equations in the setting of Banach spaces. First, we discuss the convergence analysis under &omega;-continuity condition, which is weaker than the Lipschitz and H&ouml;lder continuity conditions. Second, we apply our approach to solve Fredholm integral equations, where the first derivative of involved operator not necessarily satisfy the H&ouml;lder and Lipschitz continuity conditions. Finally, we also prove that the R-order of the method is 2p + 1 for any p $\in$ (0,1].


2016 ◽  
Vol 13 (6) ◽  
pp. 4219-4235 ◽  
Author(s):  
Sukhjit Singh ◽  
D. K. Gupta ◽  
E. Martínez ◽  
José L. Hueso

2009 ◽  
Vol 06 (02) ◽  
pp. 291-306 ◽  
Author(s):  
P. K. PARIDA ◽  
D. K. GUPTA

The aim of this paper is to discuss the convergence of a third order method for solving nonlinear equations F(x)=0 in Banach spaces by using recurrence relations. The convergence of the method is established under the assumption that the second Fréchet derivative of F satisfies a condition that is milder than Lipschitz/Hölder continuity condition. A family of recurrence relations based on two parameters depending on F is also derived. An existence-uniqueness theorem is also given that establish convergence of the method and a priori error bounds. A numerical example is worked out to show that the method is successful even in cases where Lipschitz/Hölder continuity condition fails.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Nadjet Laledj ◽  
Yong Zhou

AbstractThis paper deals with some existence, uniqueness and Ulam–Hyers–Rassias stability results for a class of implicit fractional q-difference equations. Some applications are made of some fixed point theorems in Banach spaces for the existence and uniqueness of solutions, next we prove that our problem is generalized Ulam–Hyers–Rassias stable. Two illustrative examples are given in the last section.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


2021 ◽  
Vol 22 (2) ◽  
pp. 221-240
Author(s):  
S. S. Almuthaybiri ◽  
J. M. Jonnalagadda ◽  
C. C. Tisdell

The purpose of this research is to connect fixed point methods with certain third-order boundary value problems in new and interesting ways. Our strategy involves an analysis of the problem under consideration within closed and bounded sets. We develop sufficient conditions under which the associated mappings will be contractive and invariant in these sets, which generates new advances concerning the existence, uniqueness and approximation of solutions.


2019 ◽  
Vol 24 (6) ◽  
Author(s):  
Hamid Baghani ◽  
J. Nieto

In this paper, we study a nonlinear Langevin equation involving two fractional orders  α ∈ (0; 1] and β ∈ (1; 2] with initial conditions. By means of an interesting fixed point theorem, we establish sufficient conditions for the existence and uniqueness of solutions for the fractional equations. Some illustrative numerical examples are also discussed. 


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 540 ◽  
Author(s):  
Zhang Yong ◽  
Neha Gupta ◽  
J. P. Jaiswal ◽  
Kalyanasundaram Madhu

In this paper, we study the semilocal convergence of the multi-point variant of Jarratt method under two different mild situations. The first one is the assumption that just a second-order Fréchet derivative is bounded instead of third-order. In addition, in the next one, the bound of the norm of the third order Fréchet derivative is assumed at initial iterate rather than supposing it on the domain of the nonlinear operator and it also satisfies the local ω -continuity condition in order to prove the convergence, existence-uniqueness followed by a priori error bound. During the study, it is noted that some norms and functions have to recalculate and its significance can be also seen in the numerical section.


Sign in / Sign up

Export Citation Format

Share Document