scholarly journals Some local questions for hyperbolic systems with non-regular time dependent coefficients

2017 ◽  
Vol 14 (02) ◽  
pp. 301-322 ◽  
Author(s):  
Francesco Fanelli

We investigate local properties for microlocally symmetrizable hyperbolic systems with just time dependent coefficients. Thanks to Paley–Wiener theorem, we establish finite propagation speed by showing precise estimates on the evolution of the support of the solution in terms of suitable norms of the coefficients of the operator and of the symmetrizer. From this result, local existence and uniqueness follow by quite standard methods. Our argument relies on the use of Fourier transform, and it cannot be extended to operators whose coefficients depend also on the space variables. On the other hand, it works under very mild regularity assumptions on the coefficients of the operator and of the symmetrizer.

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1998
Author(s):  
Mohamed Biomy ◽  
Khaled Zennir ◽  
Ahmed Himadan

In this paper, we consider an initial boundary value problem for nonlinear Love equation with infinite memory. By combining the linearization method, the Faedo–Galerkin method, and the weak compactness method, the local existence and uniqueness of weak solution is proved. Using the potential well method, it is shown that the solution for a class of Love-equation exists globally under some conditions on the initial datum and kernel function.


1998 ◽  
Vol 08 (03) ◽  
pp. 431-444 ◽  
Author(s):  
JOËL CHASKALOVIC

Mathematical models applied to tornadoes describe these kinds of flows as an axisymmetric fluid motion which is restricted for not developing a source or a sink near the vortex line. Here, we propose the genesis of a family of a source/sink line into a singular updraft which can modeled one of the step of the genesis of a tornado. This model consists of a three-parameter family of fluid motions, satisfying the steady and incompressible Navier–Stokes equations, which vanish at the ground. We establish the local existence and uniqueness for these fields, at the neighborhood of a nonrotating singular updraft.


2009 ◽  
Vol 09 (03) ◽  
pp. 437-477 ◽  
Author(s):  
AURÉLIEN DEYA ◽  
SAMY TINDEL

We define and solve Volterra equations driven by an irregular signal, by means of a variant of the rough path theory called algebraic integration. In the Young case, that is for a driving signal with Hölder exponent γ > 1/2, we obtain a global solution, and are able to handle the case of a singular Volterra coefficient. In case of a driving signal with Hölder exponent 1/3 < γ < 1/2, we get a local existence and uniqueness theorem. The results are easily applied to the fractional Brownian motion with Hurst coefficient H > 1/3.


Sign in / Sign up

Export Citation Format

Share Document