Locally Finite Products of Totally Permutable Nilpotent Groups

2009 ◽  
Vol 16 (03) ◽  
pp. 535-540 ◽  
Author(s):  
Maria De Falco ◽  
Francesco de Giovanni ◽  
Carmela Musella

A group G=AB is said to be totally factorized by its subgroups A and B if XY=YX for all subgroups X of A and Y of B. It is known that any finite group totally factorized by supersoluble subgroups is supersoluble, and that a finite group totally factorized by nilpotent subgroups is abelian-by-nilpotent. This latter result is extended here to certain classes of infinite groups.

Author(s):  
D. H. McLain ◽  
P. Hall

1. If P is any property of groups, then we say that a group G is ‘locally P’ if every finitely generated subgroup of G satisfies P. In this paper we shall be chiefly concerned with the case when P is the property of being nilpotent, and will examine some properties of nilpotent groups which also hold for locally nilpotent groups. Examples of locally nilpotent groups are the locally finite p-groups (groups such that every finite subset is contained in a finite group of order a power of the prime p); indeed, every periodic locally nilpotent group is the direct product of locally finite p-groups.


10.37236/5056 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Joy Morris

A finite group $G$ is a DCI-group if, whenever $S$ and $S'$ are subsets of $G$ with the Cayley graphs Cay$(G,S)$ and Cay$(G,S')$ isomorphic, there exists an automorphism $\varphi$ of $G$ with $\varphi(S)=S'$. It is a CI-group if this condition holds under the restricted assumption that $S=S^{-1}$. We extend these definitions to infinite groups, and make two closely-related definitions: an infinite group is a strongly (D)CI$_f$-group if the same condition holds under the restricted assumption that $S$ is finite; and an infinite group is a (D)CI$_f$-group if the same condition holds whenever $S$ is both finite and generates $G$.We prove that an infinite (D)CI-group must be a torsion group that is not locally-finite. We find infinite families of groups that are (D)CI$_f$-groups but not strongly (D)CI$_f$-groups, and that are strongly (D)CI$_f$-groups but not (D)CI-groups. We discuss which of these properties are inherited by subgroups. Finally, we completely characterise the locally-finite DCI-graphs on $\mathbb Z^n$. We suggest several open problems related to these ideas, including the question of whether or not any infinite (D)CI-group exists.


2005 ◽  
Vol 78 (3) ◽  
pp. 429-439 ◽  
Author(s):  
Xiuyun Guo ◽  
K. P. Shum

AbstractA subgroup H of a finite group G is said to be c–supplemented in G if there exists a subgroup K of G such that G = HK and H∩K is contained in coreG (H). In this paper some results for finite p–nilpotent groups are given based on some subgroups of Pc–supplemented in G, where p is a prime factor of the order of G and P is a Sylow p–subgroup of G. We also give some applications of these results.


1983 ◽  
Vol 26 (3) ◽  
pp. 297-306 ◽  
Author(s):  
K. D. Magill ◽  
P. R. Misra ◽  
U. B. Tewari

In [3] we initiated our study of the automorphism groups of a certain class of near-rings. Specifically, let P be any complex polynomial and let P denote the near-ring of all continuous selfmaps of the complex plane where addition of functions is pointwise and the product fg of two functions f and g in P is defined by fg=f∘P∘g. The near-ring P is referred to as a laminated near-ring with laminating element P. In [3], we characterised those polynomials P(z)=anzn + an−1zn−1 +…+a0 for which Aut P is a finite group. We are able to show that Aut P is finite if and only if Deg P≧3 and ai ≠ 0 for some i ≠ 0, n. In addition, we were able to completely determine those infinite groups which occur as automorphism groups of the near-rings P. There are exactly three of them. One is GL(2) the full linear group of all real 2×2 nonsingular matrices and the other two are subgroups of GL(2). In this paper, we begin our study of the finite automorphism groups of the near-rings P. We get a result which, in contrast to the situation for the infinite automorphism groups, shows that infinitely many finite groups occur as automorphism groups of the near-rings under consideration. In addition to this and other results, we completely determine Aut P when the coefficients of P are real and Deg P = 3 or 4.


1970 ◽  
Vol 2 (2) ◽  
pp. 267-274
Author(s):  
John Poland

If G is a finite group and P is a group-theoretic property, G will be called P-max-core if for every maximal subgroup M of G, M/MG has property P where MG = ∩ is the core of M in G. In a joint paper with John D. Dixon and A.H. Rhemtulla, we showed that if p is an odd prime and G is (p-nilpotent)-max-core, then G is p-solvable, and then using the techniques of the theory of solvable groups, we characterized nilpotent-max-core groups as finite nilpotent-by-nilpotent groups. The proof of the first result used John G. Thompson's p-nilpotency criterion and hence required p > 2. In this paper I show that supersolvable-max-core groups (and hence (2-nilpotent)-max-core groups) need not be 2-solvable (that is, solvable). Also I generalize the second result, among others, and characterize (p-nilpotent)-max-core groups (for p an odd prime) as finite nilpotent-by-(p-nilpotent) groups.


2017 ◽  
Vol 16 (02) ◽  
pp. 1750025 ◽  
Author(s):  
Jinke Hai ◽  
Shengbo Ge ◽  
Weiping He

Let [Formula: see text] be a finite group and let [Formula: see text] be the holomorph of [Formula: see text]. If [Formula: see text] is a finite nilpotent group or a symmetric group [Formula: see text] of degree [Formula: see text], then the normalizer property holds for [Formula: see text].


1979 ◽  
Vol 28 (1) ◽  
pp. 9-14
Author(s):  
Bola O. Balogun

AbstractIn Balogun (1974), we proved that a finite group in which every subgroup is conjugately pure is necessarily Abelian and we left open the infinite case. In this paper we settle this problem positively for soluble, locally soluble groups and certain classes of groups which include the FC-groups. In the last section of this paper we characterize groups which are conjugately pure in every containing group.Subject classification (Amer. Math. Soc. (MOS) 1970): 20 E 99.


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


2018 ◽  
Vol 25 (04) ◽  
pp. 541-546
Author(s):  
Jiangtao Shi ◽  
Klavdija Kutnar ◽  
Cui Zhang

A finite group G is called a special local 2-nilpotent group if G is not 2-nilpotent, the Sylow 2-subgroup P of G has a section isomorphic to the quaternion group of order 8, [Formula: see text] and NG(P) is 2-nilpotent. In this paper, it is shown that SL2(q), [Formula: see text], is a special local 2-nilpotent group if and only if [Formula: see text], and that GL2(q), [Formula: see text], is a special local 2-nilpotent group if and only if q is odd. Moreover, the solvability of finite groups is also investigated by giving two generalizations of a result from [A note on p-nilpotence and solvability of finite groups, J. Algebra 321 (2009) 1555–1560].


1996 ◽  
Vol 38 (2) ◽  
pp. 171-176
Author(s):  
Silvana Franciosi ◽  
Francesco de Giovanni ◽  
Yaroslav P. Sysak

A famous theorem of Kegel and Wielandt states that every finite group which is the product of two nilpotent subgroups is soluble (see [1], Theorem 2.4.3). On the other hand, it is an open question whether an arbitrary group factorized by two nilpotent subgroups satisfies some solubility condition, and only a few partial results are known on this subject. In particular, Kegel [6] obtained an affirmative answer in the case of linear groups, and in the same article he also proved that every locally finite group which is the product of two locally nilpotent FC-subgroups is locally soluble. Recall that a group G is said to be an FC-group if every element of G has only finitely many conjugates. Moreover, Kazarin [5] showed that if the locally finite group G = AB is factorized by an abelian subgroup A and a locally nilpotent subgroup B, then G is locally soluble. The aim of this article is to prove the following extension of the Kegel–Wielandt theorem to locally finite products of hypercentral groups.


Sign in / Sign up

Export Citation Format

Share Document