On X-Permutable Subgroups

2012 ◽  
Vol 19 (04) ◽  
pp. 699-706
Author(s):  
Baojun Li ◽  
Zhirang Zhang

A subgroup A of a group G is said to be X-permutable with another subgroup B in G, where ∅ ≠ X ⊆ G, if there exists some element x ∈ X such that ABx=BxA. In this paper, the solubility and supersolubility of finite groups are described by X-permutability of the Hall subgroups and their subgroups, in addition, the well known theorem of Schur-Zassenhaus in finite group is generalized.

2019 ◽  
Vol 69 (4) ◽  
pp. 763-772
Author(s):  
Chenchen Cao ◽  
Venus Amjid ◽  
Chi Zhang

Abstract Let σ = {σi ∣i ∈ I} be some partition of the set of all primes ℙ, G be a finite group and σ(G) = {σi∣σi ∩ π(G) ≠ ∅}. G is said to be σ-primary if ∣σ(G)∣ ≤ 1. A subgroup H of G is said to be σ-subnormal in G if there exists a subgroup chain H = H0 ≤ H1 ≤ … ≤ Ht = G such that either Hi−1 is normal in Hi or Hi/(Hi−1)Hi is σ-primary for all i = 1, …, t. A set 𝓗 of subgroups of G is said to be a complete Hall σ-set of G if every non-identity member of 𝓗 is a Hall σi-subgroup of G for some i and 𝓗 contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). Let 𝓗 be a complete Hall σ-set of G. A subgroup H of G is said to be 𝓗-permutable if HA = AH for all A ∈ 𝓗. We say that a subgroup H of G is weakly 𝓗-permutable in G if there exists a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ H𝓗, where H𝓗 is the subgroup of H generated by all those subgroups of H which are 𝓗-permutable. By using the weakly 𝓗-permutable subgroups, we establish some new criteria for a group G to be σ-soluble and supersoluble, and we also give the conditions under which a normal subgroup of G is hypercyclically embedded.


2011 ◽  
Vol 10 (05) ◽  
pp. 811-820 ◽  
Author(s):  
YANGMING LI ◽  
BAOJUN LI

Suppose G is a finite group and H is subgroup of G. H is said to be s-permutable in G if HGp = GpH for any Sylow p-subgroup Gp of G; H is called weakly s-supplemented subgroup of G if there is a subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We investigate the influence of minimal weakly s-supplemented subgroups on the structure of finite groups and generalize some recent results. Furthermore, we give a positive answer in the minimal subgroup case for Skiba's Open Questions in [On weakly s-permutable subgroups of finite groups, J. Algebra315 (2007) 192–209].


Author(s):  
Viktoria S. Zakrevskaya

Let σ = {σi|i ∈ I } be a partition of the set of all primes ℙ and G be a finite group. A set ℋ  of subgroups of G is said to be a complete Hall σ-set of G if every member ≠1 of ℋ  is a Hall σi-subgroup of G for some i ∈ I and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ⌒ π(G)  ≠ ∅.  A group is said to be σ-primary if it is a finite σi-group for some i. A subgroup A of G is said to be: σ-permutable in G if G possesses a complete Hall σ-set ℋ  such that AH x = H  xA for all H ∈ ℋ  and all x ∈ G; σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ … ≤ At = G such that either Ai − 1 ⊴ Ai or Ai /(Ai − 1)Ai is σ-primary for all i = 1, …, t; 𝔄-normal in G if every chief factor of G between AG and AG is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a 𝔄-normal subgroup A and a σ-permutable subgroup B of G such that H = < A, B >; (ii) (𝔄, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H. We study G assuming that some subgroups of G are partially σ-permutable or (𝔄, σ)-embedded in G. Some known results are generalised.


2009 ◽  
Vol 52 (1) ◽  
pp. 145-150 ◽  
Author(s):  
YANGMING LI ◽  
LIFANG WANG ◽  
YANMING WANG

AbstractLet ℨ be a complete set of Sylow subgroups of a finite group G; that is to say for each prime p dividing the order of G, ℨ contains one and only one Sylow p-subgroup of G. A subgroup H of G is said to be ℨ-permutable in G if H permutes with every member of ℨ. In this paper we characterise the structure of finite groups G with the assumption that (1) all the subgroups of Gp ∈ ℨ are ℨ-permutable in G, for all prime p ∈ π(G), or (2) all the subgroups of Gp ∩ F*(G) are ℨ-permutable in G, for all Gp ∈ ℨ and p ∈ π(G), where F*(G) is the generalised Fitting subgroup of G.


2014 ◽  
Vol 56 (3) ◽  
pp. 691-703 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
J. C. BEIDLEMAN ◽  
A. D. FELDMAN ◽  
M. F. RAGLAND

AbstractFor a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug〉$\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/CoreG(M) belongs to $\mathfrak F$. A subgroup U of a finite group G is called K-$\mathfrak F$-subnormal in G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$-normal in Ui, for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$-group if every K-$\mathfrak F$-subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$-groups. We pay special attention to the $\mathfrak F$-pronormal subgroups in this analysis.


1969 ◽  
Vol 10 (1-2) ◽  
pp. 241-250 ◽  
Author(s):  
H. Lausch

The theory of formations of soluble groups, developed by Gaschütz [4], Carter and Hawkes[1], provides fairly general methods for investigating canonical full conjugate sets of subgroups in finite, soluble groups. Those methods, however, cannot be applied to the class of all finite groups, since strong use was made of the Theorem of Galois on primitive soluble groups. Nevertheless, there is a possiblity to extend the results of the above mentioned papers to the case of Π-soluble groups as defined by Čunihin [2]. A finite group G is called Π-soluble, if, for a given set it of primes, the indices of a composition series of G are either primes belonging to It or they are not divisible by any prime of Π In this paper, we shall frequently use the following result of Čunihin [2]: Ift is a non-empty set of primes, Π′ its complement in the set of all primes, and G is a Π-soluble group, then there always exist Hall Π-subgroups and Hall ′-subgroups, constituting single conjugate sets of subgroups of G respectively, each It-subgroup of G contained in a Hall Π-subgroup of G where each ′-subgroup of G is contained in a Hall Π′-subgroup of G. All groups considered in this paper are assumed to be finite and Π-soluble. A Hall Π-subgroup of a group G will be denoted by G.


2017 ◽  
Vol 16 (12) ◽  
pp. 1750224
Author(s):  
S. E. Mirdamadi ◽  
G. R. Rezaeezadeh

A subgroup [Formula: see text] of a finite group [Formula: see text] is said to be [Formula: see text]-conditionally permutable in [Formula: see text] if for every Sylow subgroup [Formula: see text] of [Formula: see text], there exists an element [Formula: see text] such that [Formula: see text]. In this paper, the structure of solvable group [Formula: see text] in which every [Formula: see text]-subgroup of [Formula: see text] or every subnormal subgroup of [Formula: see text] is [Formula: see text]-conditionally permutable in [Formula: see text] is described. Let [Formula: see text] be a solvable group and [Formula: see text] the largest prime dividing [Formula: see text]. Suppose further that [Formula: see text] is the Sylow [Formula: see text]-subgroup of [Formula: see text] and [Formula: see text]. We are going to show that [Formula: see text] is a PST-group if and only if every subnormal subgroup of [Formula: see text] is [Formula: see text]-conditionally permutable in [Formula: see text].


2013 ◽  
Vol 11 (7) ◽  
Author(s):  
Wenbin Guo ◽  
Alexander Skiba

AbstractNew criteria of existence and conjugacy of Hall subgroups of finite groups are given.


2015 ◽  
Vol 18 (2) ◽  
Author(s):  
Wenbin Guo ◽  
Alexander N. Skiba

AbstractLet 𝒲 be a set of nilpotent Hall subgroups of a finite group


Author(s):  
Muhammad Tanveer Hussain ◽  
Venus Amjid

Let [Formula: see text] be a finite group, [Formula: see text] be a partition of the set of all primes [Formula: see text] and [Formula: see text]. A set [Formula: see text] of subgroups of [Formula: see text] is said to be a complete Hall[Formula: see text]-set of [Formula: see text] if every non-identity member of [Formula: see text] is a Hall [Formula: see text]-subgroup of [Formula: see text] and [Formula: see text] contains exactly one Hall [Formula: see text]-subgroup of [Formula: see text] for every [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] possesses a complete Hall [Formula: see text]-set [Formula: see text] such that [Formula: see text] for all [Formula: see text] and all [Formula: see text]. Let [Formula: see text] be a subgroup of [Formula: see text]. [Formula: see text] is: [Formula: see text]-[Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for some modular subgroup [Formula: see text] and [Formula: see text]-permutable subgroup [Formula: see text] of [Formula: see text]; weakly[Formula: see text]-[Formula: see text]-permutable in [Formula: see text] if there are an [Formula: see text]-[Formula: see text]-permutable subgroup [Formula: see text] and a [Formula: see text]-subnormal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text]. In this paper, we investigate the influence of weakly [Formula: see text]-[Formula: see text]-permutable subgroups on the structure of finite groups.


Sign in / Sign up

Export Citation Format

Share Document