Auslander-Reiten Sequences or Triangles Related to Rigid Subcategories

2016 ◽  
Vol 23 (01) ◽  
pp. 1-14
Author(s):  
Ming Lu

Let 𝒞 be a triangulated category which has Auslander-Reiten triangles, and ℛ a functorially finite rigid subcategory of 𝒞. It is well known that there exist Auslander-Reiten sequences in mod ℛ. In this paper, we give explicitly the relations between the Auslander-Reiten translations, sequences in mod ℛ and the Auslander-Reiten functors, triangles in 𝒞, respectively. Furthermore, if 𝒯 is a cluster-tilting subcategory of 𝒞 and mod 𝒯 is a Frobenius category, we also get the Auslander-Reiten functor and the translation functor of mod 𝒯 corresponding to the ones in 𝒞. As a consequence, we get that if the quotient of a d-Calabi-Yau triangulated category modulo a cluster tilting subcategory is Frobenius, then its stable category is (2d-1)-Calabi-Yau. This result was first proved by Keller and Reiten in the case d=2, and then by Dugas in the general case, using different methods.

2014 ◽  
Vol 21 (02) ◽  
pp. 195-206 ◽  
Author(s):  
Shengyong Pan

Let A be a finite dimensional algebra over a field k. We consider a subfunctor F of [Formula: see text], which has enough projectives and injectives such that [Formula: see text] is of finite type, where [Formula: see text] denotes the set of F-projectives. One can get the relative derived category [Formula: see text] of A-mod. For an F-self-orthogonal module TF, we discuss the relation between the relative quotient triangulated category [Formula: see text] and the relative stable category of the Frobenius category of TF-Cohen-Macaulay modules. In particular, for an F-Gorenstein algebra A and an F-tilting A-module TF, we get a triangle equivalence between [Formula: see text] and the relative stable category of TF-Cohen-Macaulay modules. This gives the relative version of a result of Chen and Zhang.


2016 ◽  
Vol 225 ◽  
pp. 64-99 ◽  
Author(s):  
ROBERT J. MARSH ◽  
YANN PALU

If $T$ and $T^{\prime }$ are two cluster-tilting objects of an acyclic cluster category related by a mutation, their endomorphism algebras are nearly Morita equivalent (Buan et al., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359(1) (2007), 323–332 (electronic)); that is, their module categories are equivalent “up to a simple module”. This result has been generalized by Yang, using a result of Plamondon, to any simple mutation of maximal rigid objects in a 2-Calabi–Yau triangulated category. In this paper, we investigate the more general case of any mutation of a (non-necessarily maximal) rigid object in a triangulated category with a Serre functor. In that setup, the endomorphism algebras might not be nearly Morita equivalent, and we obtain a weaker property that we call pseudo-Morita equivalence. Inspired by Buan and Marsh (From triangulated categories to module categories via localization II: calculus of fractions, J. Lond. Math. Soc. (2) 86(1) (2012), 152–170; From triangulated categories to module categories via localisation, Trans. Amer. Math. Soc. 365(6) (2013), 2845–2861), we also describe our result in terms of localizations.


2015 ◽  
Vol 27 (2) ◽  
Author(s):  
Thorsten Holm ◽  
Peter Jørgensen

AbstractThis paper shows a new phenomenon in higher cluster tilting theory. For each positive integerOn the one hand, theThe category 𝖢 is the algebraic triangulated category generated by a (


2013 ◽  
Vol 150 (3) ◽  
pp. 415-452 ◽  
Author(s):  
Takahide Adachi ◽  
Osamu Iyama ◽  
Idun Reiten

AbstractThe aim of this paper is to introduce $\tau $-tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field $k$ is a direct summand of exactly one or two tilting modules. An important property in cluster-tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras $kQ$, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support) $\tau $-tilting modules, and show that an almost complete support $\tau $-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional $k$-algebra $\Lambda $, we establish bijections between functorially finite torsion classes in $ \mathsf{mod} \hspace{0.167em} \Lambda $, support $\tau $-tilting modules and two-term silting complexes in ${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$. Moreover, these objects correspond bijectively to cluster-tilting objects in $ \mathcal{C} $ if $\Lambda $ is a 2-CY tilted algebra associated with a 2-CY triangulated category $ \mathcal{C} $. As an application, we show that the property of having two complements holds also for two-term silting complexes in ${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$.


2017 ◽  
Vol 2019 (18) ◽  
pp. 5597-5634 ◽  
Author(s):  
Yuta Kimura

AbstractWe study the stable category of the graded Cohen–Macaulay modules of the factor algebra of the preprojective algebra associated with an element $w$ of the Coxeter group of a quiver. We show that there exists a silting object $M(\boldsymbol{w})$ of this category associated with each reduced expression $\boldsymbol{w}$ of $w$ and give a sufficient condition on $\boldsymbol{w}$ such that $M(\boldsymbol{w})$ is a tilting object. In particular, the stable category is triangle equivalent to the derived category of the endomorphism algebra of $M(\boldsymbol{w})$. Moreover, we compare it with a triangle equivalence given by Amiot–Reiten–Todorov for a cluster category.


2020 ◽  
Vol 8 ◽  
Author(s):  
RAGNAR-OLAF BUCHWEITZ ◽  
OSAMU IYAMA ◽  
KOTA YAMAURA

In representation theory, commutative algebra and algebraic geometry, it is an important problem to understand when the triangulated category $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)=\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting (respectively, silting) object for a $\mathbb{Z}$ -graded commutative Gorenstein ring $R=\bigoplus _{i\geqslant 0}R_{i}$ . Here $\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)$ is the singularity category, and $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ is the stable category of $\mathbb{Z}$ -graded Cohen–Macaulay (CM) $R$ -modules, which are locally free at all nonmaximal prime ideals of $R$ . In this paper, we give a complete answer to this problem in the case where $\dim R=1$ and $R_{0}$ is a field. We prove that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ always admits a silting object, and that $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$ admits a tilting object if and only if either $R$ is regular or the $a$ -invariant of $R$ is nonnegative. Our silting/tilting object will be given explicitly. We also show that if $R$ is reduced and nonregular, then its $a$ -invariant is nonnegative and the above tilting object gives a full strong exceptional collection in $\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R=\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}R$ .


Author(s):  
Laertis Vaso

Abstract Given $n\leq d<\infty $ n ≤ d < ∞ , we investigate the existence of algebras of global dimension d which admit an n-cluster tilting subcategory. We construct many such examples using representation-directed algebras. First, given two representation-directed algebras A and B, a projective A-module P and an injective B-module I satisfying certain conditions, we show how we can construct a new representation-directed algebra "Image missing" in such a way that the representation theory of Λ is completely described by the representation theories of A and B. Next we introduce n-fractured subcategories which generalize n-cluster tilting subcategories for representation-directed algebras. We then show how one can construct an n-cluster tilting subcategory for Λ by using n-fractured subcategories of A and B. As an application of our construction, we show that if n is odd and d ≥ n then there exists an algebra admitting an n-cluster tilting subcategory and having global dimension d. We show the same result if n is even and d is odd or d ≥ 2n.


Author(s):  
Jiangsheng Hu ◽  
Yuxian Geng ◽  
Jinyong Wu ◽  
Huanhuan Li

Let [Formula: see text] be a commutative Noetherian ring and [Formula: see text] a semidualizing [Formula: see text]-module. We obtain an exact structure [Formula: see text] and prove that the full subcategory [Formula: see text] of [Formula: see text] is a Frobenius category with [Formula: see text] the subcategory of projective and injective objects, where [Formula: see text] and [Formula: see text] (respectively, [Formula: see text]) is the subcategory of [Formula: see text]-Gorenstein flat (respectively, [Formula: see text]-flat [Formula: see text]-cotorsion) [Formula: see text]-modules. Then the stable category [Formula: see text] of [Formula: see text] and the singularity category [Formula: see text] of [Formula: see text] are also considered. As a consequence, we get that there is a Buchweitz’s equivalence [Formula: see text] if and only if [Formula: see text] is a part of some AB-context.


Author(s):  
Sondre Kvamme

Abstract For an exact category $${{\mathcal {E}}}$$ E with enough projectives and with a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory, we show that the singularity category of $${{\mathcal {E}}}$$ E admits a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory. To do this we introduce cluster tilting subcategories of left triangulated categories, and we show that there is a correspondence between cluster tilting subcategories of $${{\mathcal {E}}}$$ E and $${\underline{{{\mathcal {E}}}}}$$ E ̲ . We also deduce that the Gorenstein projectives of $${{\mathcal {E}}}$$ E admit a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory under some assumptions. Finally, we compute the $$d\mathbb {Z}$$ d Z -cluster tilting subcategory of the singularity category for a finite-dimensional algebra which is not Iwanaga–Gorenstein.


Sign in / Sign up

Export Citation Format

Share Document