Active Anti-Synchronization Between Identical and Distinctive Hyperchaotic Systems

2008 ◽  
Vol 15 (04) ◽  
pp. 371-382 ◽  
Author(s):  
M. M. Al-sawalha ◽  
M. S. M. Noorani

This paper brings attention to hyperchaos anti-synchronization between two identical and distinctive hyperchaotic systems using active control theory. The sufficient conditions for achieving anti-synchronization of two high dimensional hyperchaotic systems is derived based on Lyapunov stability theory, where the controllers are designed by using the sum of relevant variables in hyperchaotic systems. Numerical results are presented to justify the theoretical analysis strategy.

2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Junjian Huang ◽  
Chuandong Li ◽  
Wei Zhang ◽  
Pengcheng Wei ◽  
Qi Han

Different from the most existing results, in this paper an intermittent control scheme is designed to achieve lag synchronization of coupled hyperchaotic systems. Several sufficient conditions ensuring lag synchronization are proposed by rigorous theoretical analysis with the help of the Lyapunov stability theory. Numerical simulations are also presented to show the effectiveness and feasibility of the theoretical results.


2014 ◽  
Vol 28 (05) ◽  
pp. 1450014
Author(s):  
PI LI ◽  
XING-YUAN WANG ◽  
PENG SUN ◽  
CHAO LUO ◽  
XIU-KUN WANG

In this paper, active control and adaptive control methods are applied, respectively. Adaptive control method is implemented when system parameters are unknown and active control method is applied when system parameters are known. Based on the Lyapunov stability theory, the controllers are designed to realize anti-synchronization, meanwhile, the update laws of parameters are proposed. The theoretical proof is given. And two groups of examples are shown to verify the effectiveness of the proposed schemes.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Yi Zuo ◽  
Xinsong Yang

Asymptotic synchronization for a class of coupled networks with nondelayed and delayed couplings is investigated. A distinct feature of the network is that all the dynamical nodes are affected by uncertain nonlinear nonidentical perturbations. In order to synchronize the network onto a given isolate trajectory, a novel adaptive controller is designed to overcome the effects of the nonidentical uncertain nonlinear perturbations. The designed controller has better robustness than classical adaptive controller, since it can realize the synchronization goal whether the nodes have these perturbations or not. Based on the Lyapunov stability theory and the Barbalat lemma, sufficient conditions guaranteeing the asymptotic synchronization of the coupled network are derived. Two examples with numerical simulations are given to illustrate the effectiveness of the theoretical results. Simulations also demonstrate that our adaptive controller has better robustness than existing ones.


2021 ◽  
Vol 54 (5) ◽  
pp. 789-795
Author(s):  
Yamina Haddadji ◽  
Mohamed Naguib Harmas ◽  
Abdlouahab Bouafia ◽  
Ziyad Bouchama

This research paper introduces an adaptive terminal synergetic nonlinear control. This control aims at synchronizing two hyperchaotic Zhou systems. Thus, the adaptive terminal synergetic control’s synthesis is applied to synchronize a hyperchaotic i.e., slave system with unknown parameters with another hyperchaotic i.e., master system. Accordingly, simulation results of each system in different initial conditions reveal significant convergence. Moreover, the findings proved stability and robustness of the suggested scheme using Lyapunov stability theory.


Author(s):  
Cornelius Ogab ◽  
Babatunde Idowu ◽  
Abiola Ogungbe ◽  
Eugene Onori ◽  
Olufunmilayo Ometan ◽  
...  

We present Euler’s Equation of Rigid Body, its control and synchronization using active control and recursive backstepping methods. Based on Lyapunov stability theory, control laws are derived to synchronize the chaotic system and also to control to a steady state as well as track to a desired function via recursive backstepping methods. Numerical simulation are shown to verify the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qing Wang ◽  
Yongguang Yu ◽  
Hu Wang

The robust synchronization of hyperchaotic systems with uncertainties and external disturbances is investigated. Based on the Lyapunov stability theory, the appropriate adaptive controllers and parameter update laws are designed to achieve the synchronization of uncertain hyperchaotic systems. The robust synchronization of two hyperchaotic Chen systems is taken as an example to verify the feasibility of the presented schemes. The size of the subcontroller gain’s influences on the convergence speed is discussed. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed synchronization schemes.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 304-313 ◽  
Author(s):  
M. Mossa Al-Sawalha ◽  
Ayman Al-Sawalha

AbstractThe objective of this article is to implement and extend applications of adaptive control to anti-synchronize different fractional order chaotic and hyperchaotic dynamical systems. The sufficient conditions for achieving anti–synchronization are derived by using the Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. Theoretical analysis and numerical simulations are shown to verify the results.


2011 ◽  
Vol 25 (27) ◽  
pp. 3671-3678 ◽  
Author(s):  
XING-YUAN WANG ◽  
MING-JUN WANG

In this paper, the impulsive synchronization of hyperchaotic Lü systems is discussed. The sufficient conditions on feedback strength and impulsive interval are established to guarantee the synchronization. The method is proved true by Lyapunov stability theory. In addition, a scheme of impulsive synchronization via transmitting single signal is presented. Numerical simulations show the effectiveness of the methods.


Author(s):  
Junwei Sun ◽  
Suxia Jiang ◽  
Guangzhao Cui ◽  
Yanfeng Wang

Based on combination synchronization of three chaotic systems and combination–combination synchronization of four chaotic systems, a novel scheme of dual combination synchronization is investigated for six chaotic systems in the paper. Using combined adaptive control and Lyapunov stability theory of chaotic systems, some sufficient conditions are attained to realize dual combination synchronization of six chaotic systems. The corresponding theoretical proofs and numerical simulations are presented to demonstrate the effectiveness and correctness of the dual combination synchronization. Due to the complexity of dual combination synchronization, it will be more secure and interesting to transmit and receive signals in application of communication.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 50 ◽  
Author(s):  
Piyush Pratap Singh ◽  
Vikash Kumar ◽  
Eshan Tiwari ◽  
Vinay K. Chauhan

In this paper, hybrid synchronisation of Vallis chaotic systems using a nonlinear control technique is proposed. Vallis system represents the principal quantitative features of the El-Nino Southern Oscillation (ENSO) phenomenon. A nonlinear active control technique is used for hybrid synchronisation. Control laws are designed by using the sum of the relevant variables of the both mater and slave systems. Required Lyapunov stability condition is devised using Lyapunov stability theory. Numerical simulation results reflect the successful achievement of the proposed objectives. MATLAB is used for simulation.  


Sign in / Sign up

Export Citation Format

Share Document