Mechanical Behavior Modeling of Hyperelastic Transversely Isotropic Materials Based on a New Polyconvex Strain Energy Function

2018 ◽  
Vol 10 (09) ◽  
pp. 1850104 ◽  
Author(s):  
D. M. Taghizadeh ◽  
H. Darijani

In this paper, the mechanical behavior of incompressible transversely isotropic materials is modeled using a strain energy density in the framework of Ball’s theory. Based on this profound theory and with respect to physical and mathematical aspects of deformation invariants, a new polyconvex constitutive model is proposed for the mechanical behavior of these materials. From the physical viewpoint, it is assumed that the proposed model is additively decomposed into three parts nominally representing the energy contributions from the matrix, fiber and fiber–matrix interaction where each of the parts should be presented in terms of the invariants consistent with the physics of the deformation. From the mathematical viewpoint, the proposed model satisfies the fundamental postulates on the form of strain energy density, specially polyconvexity and coercivity constraints. Indeed, polyconvexity ensures ellipticity condition, which in turn provides material stability and in combination with coercivity condition, guarantees the existence of the global minimizer of the total energy. In order to evaluate the performance of the proposed strain energy density function, some test data of incompressible transverse materials with pure homogeneous deformations are used. It is shown that there is a good agreement between the test data and the obtained results from the proposed model. At the end, the performance of the proposed model in the prediction of the material behavior is evaluated rather than other models for two representative problems.

Author(s):  
H Darijani ◽  
R Naghdabadi ◽  
M H Kargarnovin

In this article, a strain energy density function of the Saint Venant—Kirchhoff type is expressed in terms of a Lagrangian deformation measure. Applying the governing postulates to the form of the strain energy density, the mathematical expression of this measure is determined. It is observed that this measure, which is consistent with the strain energy postulates, is a strain type with the characteristic function more rational than that of the Seth—Hill strain measures for hyperelastic materials modelling. In addition, the material parameters are calculated using a novel procedure that is based on the correlation between the values of the strain energy density (rather than the stresses) cast from the test data and the theory. In order to evaluate the performance of the proposed model of the strain energy density, some test data of pure homogeneous deformations are used. It is shown that there is a good agreement between the test data and predictions of the model for incompressible and compressible isotropic materials.


1992 ◽  
Vol 27 (1) ◽  
pp. 43-44 ◽  
Author(s):  
P S Theocaris ◽  
T P Philippidis

The basic principle of positive strain energy density of an anisotropic linear or non-linear elastic solid imposes bounds on the values of the stiffness and compliance tensor components. Although rational mathematical structuring of valid intervals for these components is possible and relatively simple, there are mathematical procedures less strictly followed by previous authors, which led to an overestimation of the bounds and misinterpretation of experimental results.


2010 ◽  
Vol 78 (1) ◽  
Author(s):  
Ajeet Kumar ◽  
Subrata Mukherjee

We present a novel approach for nonlinear, three dimensional deformation of a rod that allows in-plane cross-sectional deformation. The approach is based on the concept of multiplicative decomposition, i.e., the deformation of a rod’s cross section is performed in two steps: pure in-plane cross-sectional deformation followed by its rigid motion. This decomposition, in turn, allows straightforward extension of the special Cosserat theory of rods (having rigid cross section) to a new theory allowing in-plane cross-sectional deformation. We then derive a complete set of static equilibrium equations along with the boundary conditions necessary for analytical/numerical solution of the aforementioned deformation problem. A variational approach to solve the relevant boundary value problem is also presented. Later we use symmetry arguments to derive invariants of the objective strain measures for transversely isotropic rods, as well as for rods with inbuilt handedness (hemitropy) such as DNA and carbon nanotubes. The invariants derived put restrictions on the form of the strain energy density leading to a simplified form of quadratic strain energy density that exhibits some interesting physically relevant coupling between the different modes of deformation.


2021 ◽  
Vol 15 (57) ◽  
pp. 331-349
Author(s):  
Andrea Kusch ◽  
Simone Salamina ◽  
Daniele Crivelli ◽  
Filippo Berto

Strain energy density is successfully used as criterion for failure assessment of brittle and quasi-brittle material behavior. This work investigates the possibility to use this method to predict the strength of V-notched specimens made of PMMA under static uniaxial tensile load. Samples are characterized by a variability of notch root radii and notch opening angles. Notched specimens fail with a quasi-brittle behavior, albeit PMMA has a nonlinear stress strain curve at room temperature. The notch root radius has most influence on the strength of the specimen, whereas the angle is less relevant. The value of the strain energy density is computed by means of finite element analysis, the material is considered as linear elastic. Failure prediction, based on the critical value of the strain energy density in a well-defined volume surrounding the notch tip, show very good agreement (error <15%) with experimental data.


2005 ◽  
Vol 874 ◽  
Author(s):  
Melis Arslan ◽  
Mary C. Boyce

AbstractThe mechanical behavior of the membrane of the red blood cell is governed by two primary microstructural features: the lipid bilayer and the underlying spectrin network. The lipid bilayer is analogous to a 2D fluid in that it resists changes to its planar area, yet poses little resistance to planar shear. A skeletal network of spectrin molecules is crosslinked to the lipid bilayer and provides the shear stiffness of the membrane. Here, a continuum level constitutive model of the large stretch behavior of the red blood cell membrane that directly incorporates the microstructure of the spectrin network is developed. The resemblance of the spectrin network to a triangulated network is used to identify a representative volume element (RVE) for the model. A strain energy density function in terms of an arbitrary planar deformation field is proposed using the RVE. Differentiation of the strain energy density function provides expressions for the general multiaxial stress-stretch behavior of the material. The stress-strain behavior of the membrane when subjected to uniaxial loading conditions in different directions is given, showing the capabilities of the proposed microstructurally-detailed constitutive modeling approach in capturing the evolving anisotropic nature of the mechanical behavior.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Héctor E. Jaramillo

Due to the importance of the intervertebral disc in the mechanical behavior of the human spine, special attention has been paid to it during the development of finite element models of the human spine. The mechanical behavior of the intervertebral disc is nonlinear, heterogeneous, and anisotropic and, due to the low permeability, is usually represented as a hyperelastic model. The intervertebral disc is composed of the nucleus pulposus, the endplates, and the annulus fibrosus. The annulus fibrosus is modeled as a hyperelastic matrix reinforced with several fiber families, and researchers have used different strain energy density functions to represent it. This paper presents a comparative study between the strain energy density functions most frequently used to represent the mechanical behavior of the annulus fibrosus: the Yeoh and Mooney-Rivlin functions. A finite element model of the annulus fibrosus of the L4-L5 segment under the action of three independent and orthogonal moments of 8 N-m was used, employing Abaqus software. A structured mesh with eight divisions along the height and the radial direction of annulus fibrosus and tetrahedron elements for the endplates were used, and an exponential energy function was employed to represent the mechanical behavior of the fibers. A total of 16 families were used; the fiber orientation varied with the radial coordinate from 25° on the outer boundary to 46° on the inner boundary, measuring it with respect to the transverse plane. The mechanical constants were taken from the reported literature. The range of motion was obtained by finite element analysis using different values of the mechanical constants and these results were compared with the reported experimental data. It was found that the Yeoh function showed a better fit to the experimental range of motion than the Mooney-Rivlin function, especially in the nonlinear region.


Sign in / Sign up

Export Citation Format

Share Document