Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates

Author(s):  
H Darijani ◽  
R Naghdabadi ◽  
M H Kargarnovin

In this article, a strain energy density function of the Saint Venant—Kirchhoff type is expressed in terms of a Lagrangian deformation measure. Applying the governing postulates to the form of the strain energy density, the mathematical expression of this measure is determined. It is observed that this measure, which is consistent with the strain energy postulates, is a strain type with the characteristic function more rational than that of the Seth—Hill strain measures for hyperelastic materials modelling. In addition, the material parameters are calculated using a novel procedure that is based on the correlation between the values of the strain energy density (rather than the stresses) cast from the test data and the theory. In order to evaluate the performance of the proposed model of the strain energy density, some test data of pure homogeneous deformations are used. It is shown that there is a good agreement between the test data and predictions of the model for incompressible and compressible isotropic materials.

2013 ◽  
Vol 747 ◽  
pp. 631-634
Author(s):  
Watcharapong Chookaew ◽  
Jirachai Mingbunjurdsuk ◽  
Pairote Jittham ◽  
Somjate Patcharaphun

Several constitutive models of non-linear large elastic deformation based on strain-energy-density functions have been developed for hyperelastic materials. These models, coupled with the Finite Element Method (FEM), can effectively utilized by design engineers to analyze and design elastomeric products operating under the deformation states. However, due to the complexities of the mathematical formulation which can only obtained at the moderate strain and the assumption of material used for the analysis. Therefore it is formidable task for design engineer to make use of these constitutive relationships. In the present work, the strain-energy-density function of weldline containing rubber part was constructed by using the Neural Network (NN) model. The analytical results were compared to those obtained by Neo-Hookean, Mooney-Rivlin, Ogden models. Good agreement between developed NN model and the existing experimental data was found, especially at very low strain and at very high strain.


1995 ◽  
Vol 48 (11S) ◽  
pp. S19-S24
Author(s):  
Nelson Achcar

A representation theorem for the strain energy density function of a material possessing rotational symetry in a given direction (the weakest type of transverse isotropy) is presented. From this result, constitutive equations for hyperelastic unconstrained and incompressible materials that possess this kind of symmetry are derived.


2018 ◽  
Vol 10 (09) ◽  
pp. 1850104 ◽  
Author(s):  
D. M. Taghizadeh ◽  
H. Darijani

In this paper, the mechanical behavior of incompressible transversely isotropic materials is modeled using a strain energy density in the framework of Ball’s theory. Based on this profound theory and with respect to physical and mathematical aspects of deformation invariants, a new polyconvex constitutive model is proposed for the mechanical behavior of these materials. From the physical viewpoint, it is assumed that the proposed model is additively decomposed into three parts nominally representing the energy contributions from the matrix, fiber and fiber–matrix interaction where each of the parts should be presented in terms of the invariants consistent with the physics of the deformation. From the mathematical viewpoint, the proposed model satisfies the fundamental postulates on the form of strain energy density, specially polyconvexity and coercivity constraints. Indeed, polyconvexity ensures ellipticity condition, which in turn provides material stability and in combination with coercivity condition, guarantees the existence of the global minimizer of the total energy. In order to evaluate the performance of the proposed strain energy density function, some test data of incompressible transverse materials with pure homogeneous deformations are used. It is shown that there is a good agreement between the test data and the obtained results from the proposed model. At the end, the performance of the proposed model in the prediction of the material behavior is evaluated rather than other models for two representative problems.


1986 ◽  
pp. 237-253
Author(s):  
G. C. Sih ◽  
J. G. Michopoulos ◽  
S. C. Chou

2018 ◽  
Vol 24 (6) ◽  
pp. 1785-1799 ◽  
Author(s):  
Y. Q. Li ◽  
X.-L. Gao

The upper triangular decomposition has recently been proposed to multiplicatively decompose the deformation gradient tensor into a product of a rotation tensor and an upper triangular tensor called the distortion tensor, whose six components can be directly related to pure stretch and simple shear deformations, which are physically measurable. In the current paper, constitutive equations for hyperelastic materials are derived using strain energy density functions in terms of the distortion tensor, which satisfy the principle of material frame indifference and the first and second laws of thermodynamics. Being expressed directly as derivatives of the strain energy density function with respect to the components of the distortion tensor, the Cauchy stress components have simpler expressions than those based on the invariants of the right Cauchy-Green deformation tensor. To illustrate the new constitutive equations, strain energy density functions in terms of the distortion tensor are provided for unconstrained and incompressible isotropic materials, incompressible transversely isotropic composite materials, and incompressible orthotropic composite materials with two families of fibers. For each type of material, example problems are solved using the newly proposed constitutive equations and strain energy density functions, both in terms of the distortion tensor. The solutions of these problems are found to be the same as those obtained by applying the polar decomposition-based invariants approach, thereby validating and supporting the newly developed, alternative method based on the upper triangular decomposition of the deformation gradient tensor.


1997 ◽  
Vol 14 (6) ◽  
pp. 604-629 ◽  
Author(s):  
A. Hernández ◽  
J. Albizuri ◽  
M.B.G. Ajuria ◽  
M.V. Hormaza

Sign in / Sign up

Export Citation Format

Share Document