ON VALUES OF d(n!)/m!, ϕ(n!)/m! AND σ(n!)/m!

2010 ◽  
Vol 06 (06) ◽  
pp. 1199-1214 ◽  
Author(s):  
DANIEL BACZKOWSKI ◽  
MICHAEL FILASETA ◽  
FLORIAN LUCA ◽  
OGNIAN TRIFONOV

For f one of the classical arithmetic functions d, ϕ and σ, we establish constraints on the quadruples (n, m, a, b) of integers satisfying f(n!)/m! = a/b. In particular, our results imply that as nm tends to infinity, the number of distinct prime divisors dividing the product of the numerator and denominator of the fraction f(n!)/m!, when reduced, tends to infinity.

1966 ◽  
Vol 9 (4) ◽  
pp. 427-431 ◽  
Author(s):  
A. A. Gioia ◽  
M.V. Subbarao

In this note the arithmetic functions L(n) and w(n) denote respectively the number and product of the distinct prime divisors of the integer n ≥ 1, and L(l) = 0, w(l) = 1. An arithmetic function f is called multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1. It is known ([1], [3], [4]) that every multiplicative function f satisfies the identity1.1


2020 ◽  
Vol 244 ◽  
pp. 01008
Author(s):  
Jean-Paul Allouche

Is it possible to give a reasonable value to the infinite product 1 × 2 × 3 × · · · × n × · · · ? In other words, can we define some sort of convergence of the finite product 1 × 2 × 3 × · · · × n when n goes to infinity? One way is to relate this product to the R√iemann zeta function and to its analytic continuation. This approach leads to: 1 × 2 × 3 × · · · × n × · · · = 2π. More generally the “zeta-regularization” of an infinite product consists of introducing a related Dirichlet series and its analytic continuation at 0 (if it exists). We will survey some properties of this generalized product and allude to applications. Then we will give two families of possibly new examples: one unifies and generalizes known results for the zeta-regularization of the products of Fibonacci, balanced and Lucas-balanced numbers; the other studies the zeta-regularized products of values of classical arithmetic functions. Finally we ask for a possible zeta-regularity notion of complexity.


1967 ◽  
Vol 10 (1) ◽  
pp. 65-73 ◽  
Author(s):  
M. V. Subbarao ◽  
A. A. Gioia

Throughout this paper the arithmetic functions L(n) and w(n) denote respectively the number and product of the distinct prime divisors of the integer n > 1, with L(1) = 0 and w(1) = 1. Also letWe recall that an arithmetic function f(n) is said to be multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1, where (m, n) denotes as usual the greatest common divisor of m and n.


Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

AbstractIn this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions g and h, where g is normalized, of moderate growth, and $$0<h(n) \le h(n+1)$$ 0 < h ( n ) ≤ h ( n + 1 ) . We put $$P_0^{g,h}(x)=1$$ P 0 g , h ( x ) = 1 and $$\begin{aligned} P_n^{g,h}(x) := \frac{x}{h(n)} \sum _{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{aligned}$$ P n g , h ( x ) : = x h ( n ) ∑ k = 1 n g ( k ) P n - k g , h ( x ) . As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind $$\eta $$ η -function. Here, g is the sum of divisors and h the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invariant, and Chebyshev polynomials of the second kind.


2020 ◽  
Vol 18 (1) ◽  
pp. 907-915
Author(s):  
Zhongbi Wang ◽  
Chao Qin ◽  
Heng Lv ◽  
Yanxiong Yan ◽  
Guiyun Chen

Abstract For a positive integer n and a prime p, let {n}_{p} denote the p-part of n. Let G be a group, \text{cd}(G) the set of all irreducible character degrees of G , \rho (G) the set of all prime divisors of integers in \text{cd}(G) , V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho (G)\right\} , where {p}^{{e}_{p}(G)}=\hspace{.25em}\max \hspace{.25em}\{\chi {(1)}_{p}|\chi \in \text{Irr}(G)\}. In this article, it is proved that G\cong {L}_{2}({p}^{2}) if and only if |G|=|{L}_{2}({p}^{2})| and V(G)=V({L}_{2}({p}^{2})) .


2014 ◽  
Vol 150 (10) ◽  
pp. 1729-1741 ◽  
Author(s):  
John Lesieutre

AbstractWe exhibit a pseudoeffective $\mathbb{R}$-divisor ${D}_{\lambda }$ on the blow-up of ${\mathbb{P}}^{3}$ at nine very general points which lies in the closed movable cone and has negative intersections with a set of curves whose union is Zariski dense. It follows that the diminished base locus ${\boldsymbol{B}}_{-}({D}_{\lambda })={\bigcup }_{A\,\text{ample}}\boldsymbol{B}({D}_{\lambda }+A)$ is not closed and that ${D}_{\lambda }$ does not admit a Zariski decomposition in even a very weak sense. By a similar method, we construct an $\mathbb{R}$-divisor on the family of blow-ups of ${\mathbb{P}}^{2}$ at ten distinct points, which is nef on a very general fiber but fails to be nef over countably many prime divisors in the base.


Sign in / Sign up

Export Citation Format

Share Document