DEFORMATIONS OF GALOIS REPRESENTATIONS AND THE THEOREMS OF SATO–TATE AND LANG–TROTTER

2011 ◽  
Vol 07 (08) ◽  
pp. 2065-2079
Author(s):  
AFTAB PANDE

We construct infinitely ramified Galois representations ρ such that the al(ρ)'s have distributions in contrast to the statements of Sato–Tate, Lang–Trotter and others. Using similar methods we deform a residual Galois representation for number fields and obtain an infinitely ramified representation with very large image, generalizing a result of Ramakrishna.

2008 ◽  
Vol 8 (1) ◽  
pp. 99-177 ◽  
Author(s):  
Frank Calegari ◽  
Barry Mazur

AbstractLet K be an arbitrary number field, and let ρ : Gal($\math{\bar{K}}$/K) → GL2(E) be a nearly ordinary irreducible geometric Galois representation. In this paper, we study the nearly ordinary deformations of ρ. When K is totally real and ρ is modular, results of Hida imply that the nearly ordinary deformation space associated to ρ contains a Zariski dense set of points corresponding to ‘automorphic’ Galois representations. We conjecture that if K is not totally real, then this is never the case, except in three exceptional cases, corresponding to: (1) ‘base change’, (2) ‘CM’ forms, and (3) ‘even’ representations. The latter case conjecturally can only occur if the image of ρ is finite. Our results come in two flavours. First, we prove a general result for Artin representations, conditional on a strengthening of the Leopoldt Conjecture. Second, when K is an imaginary quadratic field, we prove an unconditional result that implies the existence of ‘many’ positive-dimensional components (of certain deformation spaces) that do not contain infinitely many classical points. Also included are some speculative remarks about ‘p-adic functoriality’, as well as some remarks on how our methods should apply to n-dimensional representations of Gal($\math{\bar{\QQ}}$/ℚ) when n > 2.


2011 ◽  
Vol 11 (1) ◽  
pp. 161-188 ◽  
Author(s):  
Naotake Takao

AbstractLetCbe a proper smooth geometrically connected hyperbolic curve over a field of characteristic 0 and ℓ a prime number. We prove the injectivity of the homomorphism from the pro-ℓ mapping class group attached to the two dimensional configuration space ofCto the one attached toC, induced by the natural projection. We also prove a certain graded Lie algebra version of this injectivity. Consequently, we show that the kernel of the outer Galois representation on the pro-ℓ pure braid group onCwithnstrings does not depend onn, even ifn= 1. This extends a previous result by Ihara–Kaneko. By applying these results to the universal family over the moduli space of curves, we solve completely Oda's problem on the independency of certain towers of (infinite) algebraic number fields, which has been studied by Ihara, Matsumoto, Nakamura, Ueno and the author. Sequentially we obtain certain information of the image of this Galois representation and get obstructions to the surjectivity of the Johnson–Morita homomorphism at each sufficiently large even degree (as Oda predicts), for the first time for a proper curve.


2017 ◽  
Vol 153 (11) ◽  
pp. 2215-2286 ◽  
Author(s):  
Florian Herzig ◽  
Daniel Le ◽  
Stefano Morra

Suppose that $F/F^{+}$ is a CM extension of number fields in which the prime $p$ splits completely and every other prime is unramified. Fix a place $w|p$ of $F$. Suppose that $\overline{r}:\operatorname{Gal}(\overline{F}/F)\rightarrow \text{GL}_{3}(\overline{\mathbb{F}}_{p})$ is a continuous irreducible Galois representation such that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ is upper-triangular, maximally non-split, and generic. If $\overline{r}$ is automorphic, and some suitable technical conditions hold, we show that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ can be recovered from the $\text{GL}_{3}(F_{w})$-action on a space of mod $p$ automorphic forms on a compact unitary group. On the way we prove results about weights in Serre’s conjecture for $\overline{r}$, show the existence of an ordinary lifting of $\overline{r}$, and prove the freeness of certain Taylor–Wiles patched modules in this context. We also show the existence of many Galois representations $\overline{r}$ to which our main theorem applies.


Author(s):  
Laia Amorós

Let [Formula: see text] denote the mod [Formula: see text] local Hecke algebra attached to a normalized Hecke eigenform [Formula: see text], which is a commutative algebra over some finite field [Formula: see text] of characteristic [Formula: see text] and with residue field [Formula: see text]. By a result of Carayol we know that, if the residual Galois representation [Formula: see text] is absolutely irreducible, then one can attach to this algebra a Galois representation [Formula: see text] that is a lift of [Formula: see text]. We will show how one can determine the image of [Formula: see text] under the assumptions that (i) the image of the residual representation contains [Formula: see text], (ii) [Formula: see text] and (iii) the coefficient ring is generated by the traces. As an application we will see that the methods that we use allow to deduce the existence of certain [Formula: see text]-elementary abelian extensions of big non-solvable number fields.


Author(s):  
Filip Najman ◽  
George C. Ţurcaş

In this paper we prove that for every integer [Formula: see text], there exists an explicit constant [Formula: see text] such that the following holds. Let [Formula: see text] be a number field of degree [Formula: see text], let [Formula: see text] be any rational prime that is totally inert in [Formula: see text] and [Formula: see text] any elliptic curve defined over [Formula: see text] such that [Formula: see text] has potentially multiplicative reduction at the prime [Formula: see text] above [Formula: see text]. Then for every rational prime [Formula: see text], [Formula: see text] has an irreducible mod [Formula: see text] Galois representation. This result has Diophantine applications within the “modular method”. We present one such application in the form of an Asymptotic version of Fermat’s Last Theorem that has not been covered in the existing literature.


2005 ◽  
Vol 48 (1) ◽  
pp. 16-31 ◽  
Author(s):  
Alina Carmen Cojocaru ◽  
Ernst Kani

AbstractLet E be an elliptic curve defined over ℚ, of conductor N and without complex multiplication. For any positive integer l, let ϕl be the Galois representation associated to the l-division points of E. From a celebrated 1972 result of Serre we know that ϕl is surjective for any sufficiently large prime l. In this paper we find conditional and unconditional upper bounds in terms of N for the primes l for which ϕl is not surjective.


2001 ◽  
pp. 765-790
Author(s):  
Ichiro Satake ◽  
Genjiro Fujisaki ◽  
Kazuya Kato ◽  
Masato Kurihara ◽  
Shoichi Nakajima

2018 ◽  
Vol 19 (2) ◽  
pp. 281-306 ◽  
Author(s):  
Mladen Dimitrov ◽  
Gabor Wiese

The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$. This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$, namely via ‘partial’ Frobenius operators.


2008 ◽  
Vol 144 (4) ◽  
pp. 827-848 ◽  
Author(s):  
Alina Carmen Cojocaru ◽  
Chantal David

AbstractLet ϕ be a Drinfeld module of rank 2 over the field of rational functions $F=\mathbb {F}_q(T)$, with $\mathrm {End}_{\bar {F}}(\phi ) = \mathbb {F}_q[T]$. Let K be a fixed imaginary quadratic field over F and d a positive integer. For each prime $\mathfrak {p}$ of good reduction for ϕ, let $\pi _{\mathfrak {p}}(\phi )$ be a root of the characteristic polynomial of the Frobenius endomorphism of ϕ over the finite field $\mathbb {F}_q[T] / \mathfrak {p}$. Let Πϕ(K;d) be the number of primes $\mathfrak {p}$ of degree d such that the field extension $F(\pi _{\mathfrak {p}}(\phi ))$ is the fixed imaginary quadratic field K. We present upper bounds for Πϕ(K;d) obtained by two different approaches, inspired by similar ones for elliptic curves. The first approach, inspired by the work of Serre, is to consider the image of Frobenius in a mixed Galois representation associated to K and to the Drinfeld module ϕ. The second approach, inspired by the work of Cojocaru, Fouvry and Murty, is based on an application of the square sieve. The bounds obtained with the first method are better, but depend on the fixed quadratic imaginary field K. In our application of the second approach, we improve the results of Cojocaru, Murty and Fouvry by considering projective Galois representations.


Sign in / Sign up

Export Citation Format

Share Document