On the equation φ(Xm - 1) = Xn - 1

2015 ◽  
Vol 11 (05) ◽  
pp. 1691-1700
Author(s):  
Bernadette Faye ◽  
Florian Luca

Here, we show that the title equation has only finitely many positive integer solutions (X, m, n), where φ is the Euler function.

Author(s):  
Xu Yifan ◽  
Shen Zhongyan

By using the properties of Euler function, an upper bound of solutions of Euler function equation  is given, where  is a positive integer. By using the classification discussion and the upper bound we obtained, all positive integer solutions of the generalized Euler function equation  are given, where is the number of distinct prime factors of n.


2012 ◽  
Vol 204-208 ◽  
pp. 4785-4788
Author(s):  
Bin Chen

For any Positive Integer N, LetΦ(n)andS(n)Denote the Euler Function and the Smarandache Function of the Integer N.In this Paper, we Use the Elementary Number Theory Methods to Get the Solutions of the Equation Φ(n)=S(nk) if the K=9, and Give its All Positive Integer Solutions.


1998 ◽  
Vol 21 (3) ◽  
pp. 581-586
Author(s):  
Geoffrey B. Campbell

We obtain infinite products related to the concept of visible from the origin point vectors. Among these is∏k=3∞(1−Z)φ,(k)/k=11−Zexp(Z32(1−Z)2−12Z−12Z(1−Z)),  |Z|<1,in whichφ3(k)denotes for fixedk, the number of positive integer solutions of(a,b,k)=1wherea<b<k, assuming(a,b,k)is thegcd(a,b,k).


2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].


2021 ◽  
Vol 27 (2) ◽  
pp. 88-100
Author(s):  
Qiongzhi Tang ◽  

Using the theory of Pell equation, we study the non-trivial positive integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(x)f(y)+f(y)^2$ for certain polynomials f(x), which mean to construct integral triangles with two sides given by the values of polynomials f(x) and f(y) with the intersection angle $120^\circ$ or $60^\circ$.


2018 ◽  
Vol 61 (03) ◽  
pp. 535-544
Author(s):  
TOMOHIRO YAMADA

AbstractWe shall show that, for any positive integer D &gt; 0 and any primes p1, p2, the diophantine equation x2 + D = 2sp1kp2l has at most 63 integer solutions (x, k, l, s) with x, k, l ≥ 0 and s ∈ {0, 2}.


2015 ◽  
Vol 713-715 ◽  
pp. 1483-1486
Author(s):  
Yi Wu ◽  
Zheng Ping Zhang

In this paper, we studied the positive integer solutions of a typical Diophantine equation starting from two basic equations including a Diophantine equation and a Pell equation, and we will prove all the positive integer solutions of the typical Diophantine equation.


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


2012 ◽  
Vol 93 (1-2) ◽  
pp. 85-90 ◽  
Author(s):  
ANDREJ DUJELLA ◽  
FLORIAN LUCA

AbstractWe study positive integers $n$ such that $n\phi (n)\equiv 2\hspace{0.167em} {\rm mod}\hspace{0.167em} \sigma (n)$, where $\phi (n)$ and $\sigma (n)$ are the Euler function and the sum of divisors function of the positive integer $n$, respectively. We give a general ineffective result showing that there are only finitely many such $n$ whose prime factors belong to a fixed finite set. When this finite set consists only of the two primes $2$ and $3$ we use continued fractions to find all such positive integers $n$.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S &sube; {xi &middot; xj = xk : i, j, k &isin; {1, . . . , n}} &cup; {xi + 1 = xk : i, k &isin;{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn &le; f (2n). We prove:&nbsp;&nbsp; (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M &sube; N has a finite-fold Diophantine representation, then M is computable.


Sign in / Sign up

Export Citation Format

Share Document