On the number of divisors of a quaternary quadratic form

2016 ◽  
Vol 12 (05) ◽  
pp. 1219-1235 ◽  
Author(s):  
Huafeng Liu ◽  
Liqun Hu

Let [Formula: see text] We obtain the asymptotic formula [Formula: see text] where [Formula: see text] are two constants. This improves the previous error term [Formula: see text] obtained by the second author [An asymptotic formula related to the divisors of the quaternary quadratic form, Acta Arith. 166 (2014) 129–140].

Author(s):  
L. Mirsky

I. Throughout this paper k1, …, k3 will denote s ≥ I fixed distinct positive integers. Some years ago Pillai (1936) found an asymptotic formula, with error term O(x/log x), for the number of positive integers n ≤ x such that n + k1, …, n + k3 are all square-free. I recently considered (Mirsky, 1947) the corresponding problem for r-free integers (i.e. integers not divisible by the rth power of any prime), and was able, in particular, to reduce the error term in Pillai's formula.Our present object is to discuss various generalizations and extensions of Pillai's problem. In all investigations below we shall be concerned with a set A of integers. This is any given, finite or infinite, set of integers greater than 1 and subject to certain additional restrictions which will be stated later. The elements of A will be called a-numbers, and the letter a will be reserved for them. A number which is not divisible by any a-number will be called A-free, and our main concern will be with the study of A-free numbers. Their additive properties have recently been investigated elsewhere (Mirsky, 1948), and some estimates obtained in that investigation will be quoted in the present paper.


2016 ◽  
Vol 103 (2) ◽  
pp. 231-249
Author(s):  
JUN FURUYA ◽  
MAKOTO MINAMIDE ◽  
YOSHIO TANIGAWA

We attempt to discuss a new circle problem. Let $\unicode[STIX]{x1D701}(s)$ denote the Riemann zeta-function $\sum _{n=1}^{\infty }n^{-s}$ ($\text{Re}\,s>1$) and $L(s,\unicode[STIX]{x1D712}_{4})$ the Dirichlet $L$-function $\sum _{n=1}^{\infty }\unicode[STIX]{x1D712}_{4}(n)n^{-s}$ ($\text{Re}\,s>1$) with the primitive Dirichlet character mod 4. We shall define an arithmetical function $R_{(1,1)}(n)$ by the coefficient of the Dirichlet series $\unicode[STIX]{x1D701}^{\prime }(s)L^{\prime }(s,\unicode[STIX]{x1D712}_{4})=\sum _{n=1}^{\infty }R_{(1,1)}(n)n^{-s}$$(\text{Re}\,s>1)$. This is an analogue of $r(n)/4=\sum _{d|n}\unicode[STIX]{x1D712}_{4}(d)$. In the circle problem, there are many researches of estimations and related topics on the error term in the asymptotic formula for $\sum _{n\leq x}r(n)$. As a new problem, we deduce a ‘truncated Voronoï formula’ for the error term in the asymptotic formula for $\sum _{n\leq x}R_{(1,1)}(n)$. As a direct application, we show the mean square for the error term in our new problem.


2006 ◽  
Vol 13 (4) ◽  
pp. 687-691
Author(s):  
Guram Gogishvili

Abstract Let 𝑚 ∈ ℕ, 𝑓 be a positive definite, integral, primitive, quaternary quadratic form of the determinant 𝑑 and let ρ(𝑓,𝑚) be the corresponding singular series. When studying the best estimates for ρ(𝑓,𝑚) with respect to 𝑑 and 𝑚 we proved in [Gogishvili, Trudy Tbiliss. Univ. 346: 72–77, 2004] that where 𝑏(𝑘) is the product of distinct prime factors of 16𝑘 if 𝑘 ≠ 1 and 𝑏(𝑘) = 3 if 𝑘 = 1. The present paper proves a more precise estimate where 𝑑 = 𝑑0𝑑1, if 𝑝 > 2; 𝑕(2) ⩾ –4. The last estimate for ρ(𝑓,𝑚) as a general result for quaternary quadratic forms of the above-mentioned type is unimprovable in a certain sense.


2000 ◽  
Vol 43 (2) ◽  
pp. 309-323 ◽  
Author(s):  
Manfred Kühleitner ◽  
Werner Georg Nowak

AbstractIn this article we consider sums S(t) = Σnψ (tf(n/t)), where ψ denotes, essentially, the fractional part minus ½ f is a C4-function with f″ non-vanishing, and summation is extended over an interval of order t. For the mean-square of S(t), an asymptotic formula is established. If f is algebraic this can be sharpened by the indication of an error term.


2020 ◽  
pp. 1-34
Author(s):  
Jiawei Lin ◽  
Greg Martin

Abstract Let $a_1$ , $a_2$ , and $a_3$ be distinct reduced residues modulo q satisfying the congruences $a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$ . We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which $\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$ . The relationship among the $a_i$ allows us to normalize the error terms for the $\pi (x;q,a_i)$ in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.


1985 ◽  
Vol 98 ◽  
pp. 37-42 ◽  
Author(s):  
Kohji Matsumoto

Let dk(n) be the number of the factorizations of n into k positive numbers. It is known that the following asymptotic formula holds: where r and q are co-prime integers with 0 < r < q, Pk is a polynomial of degree k − 1, φ(q) is the Euler function, and Δk(q; r) is the error term. (See Lavrik [3]).


Author(s):  
K. S. Gangadharan ◽  
A. E. Ingham

Let r(n) be the number of representations of n as a sum of two squares, d(n) the number of divisors of n, andwhere γ is Euler's constant. Then P(x) is the error term in the problem of the lattice points of the circle, and Δ(x) the error term in Dirichlet's divisor problem, or the problem of the lattice points of the rectangular hyperbola.


Sign in / Sign up

Export Citation Format

Share Document