Liouville identities with two functions

2016 ◽  
Vol 12 (05) ◽  
pp. 1345-1363
Author(s):  
Şaban Alaca ◽  
Greg Doyle

We express products of Lambert series as power series. We use these Lambert series-to-power series identities to obtain new Liouville identities with two functions. Many of the known Liouville identities follow from our new identities. We explore the relationships between Lambert series, new Liouville identities, and convolution sums. We then obtain recursive formulae for various convolution sums.

2020 ◽  
Vol Volume 42 - Special... ◽  
Author(s):  
P Agarwal ◽  
S Kanemitsu ◽  
T Kuzumaki

International audience In this note, we study radial limits of power and Laurent series which are related to the Lerch zeta-function or polylogarithm function. As has been pointed out in [CKK18], there have appeared many instances in which the imaginary part of the Lerch zeta-function was considered by eliminating the real part by considering the odd part only. Mordell studied the properties of the power series resembling Lambert series, and in particular considered whether the limit function is a rational function or not. Our main result is the elucidation of the threshold case of b_n = 1/n studied by Mordell [Mor63], revealing that his result is the odd part of Theorem 1.1 in view of the identities (1.9), (1.5). We also refer to Lambert series considered by Titchmarsh [Tit38] in connection with Estermann's zeta-functions.


Metrologiya ◽  
2020 ◽  
pp. 16-24
Author(s):  
Alexandr D. Chikmarev

A single program has been developed to ensure that the final result of the data processing of the measurement calibration protocol is obtained under normal conditions. The calibration result contains a calibration function or a correction function in the form of a continuous sedate series and a calibration chart based on typical additive error probabilities. Solved the problem of the statistical treatment of the calibration protocol measuring in normal conditions within a single program “MMI–calibration 3.0” that includes identification of the calibration function in a continuous power series of indications of a measuring instrument and chart calibration. An example of solving the problem of calibration of the thermometer by the working standard of the 3rd grade with the help of the “MMI-calibration 3.0” program.


2016 ◽  
Vol 11 (1) ◽  
pp. 38-52
Author(s):  
I.M. Utyashev ◽  
A.M. Akhtyamov

The paper discusses direct and inverse problems of oscillations of the string taking into account symmetrical characteristics of the external environment. In particular, we propose a modified method of finding natural frequencies using power series, and also the problem of identification of the boundary conditions type and parameters for the boundary value problem describing the vibrations of a string is solved. It is shown that to identify the form and parameters of the boundary conditions the two natural frequencies is enough in the case of a symmetric potential q(x). The estimation of the convergence of the proposed methods is done.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Valdete Loku ◽  
Naim L. Braha ◽  
Toufik Mansour ◽  
M. Mursaleen

AbstractThe main purpose of this paper is to use a power series summability method to study some approximation properties of Kantorovich type Szász–Mirakyan operators including Sheffer polynomials. We also establish Voronovskaya type result.


2021 ◽  
pp. 1-20
Author(s):  
K. PUSHPA ◽  
K. R. VASUKI

Abstract The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$ , for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).


Sign in / Sign up

Export Citation Format

Share Document