fractional power series
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 23)

H-INDEX

8
(FIVE YEARS 4)

Fractals ◽  
2021 ◽  
Author(s):  
MUHAMMAD AKBAR ◽  
RASHID NAWAZ ◽  
SUMBAL AHSAN ◽  
KOTTAKKARAN SOOPPY NISAR ◽  
KAMAL SHAH ◽  
...  

Fractional differential and integral equations are focus of the researchers owing to their tremendous applications in different field of science and technology, such as physics, chemistry, mathematical biology, dynamical system and engineering. In this work, a power series approach called Residual Power Series Method (RPSM) is applied for the solution of fractional (non-integer) order integro-differential equations (FIDEs). The Caputo sense is used for calculating fractional derivatives. Comparison of the obtained solution is made with the Trigonometric Transform Method (TTM) and Optimal Homotopy Asymptotic Method (OHAM). There is no restrictive condition on the proposed solution. The presented technique is simple in applicability and easily computable.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1070
Author(s):  
Pshtiwan Othman Mohammed ◽  
José António Tenreiro Machado ◽  
Juan L. G. Guirao ◽  
Ravi P. Agarwal

Nonlinear fractional differential equations reflect the true nature of physical and biological models with non-locality and memory effects. This paper considers nonlinear fractional differential equations with unknown analytical solutions. The Adomian decomposition and the fractional power series methods are adopted to approximate the solutions. The two approaches are illustrated and compared by means of four numerical examples.


Author(s):  
C. J. Chapman ◽  
H. P. Wynn

This paper derives an explicit formula for a type of fractional power series, known as a Puiseux series, arising in a wide class of applied problems in the physical sciences and engineering. Detailed consideration is given to the gaps which occur in these series (lacunae); they are shown to be determined by a number-theoretic argument involving the greatest common divisor of a set of exponents appearing in the Newton polytope of the problem, and by two number-theoretic objects, called here Sylvester sets, which are complements of Frobenius sets. A key tool is Faà di Bruno’s formula for high derivatives, as implemented by Bell polynomials. Full account is taken of repeated roots, of arbitrary multiplicity, in the leading-order polynomial which determines a fractional-power expansion, namely the facet polynomial. For high multiplicity, the fractional powers are shown to have large denominators and contain irregularly spaced gaps. The orientation and methods of the paper are those of applications, but in a concluding section we draw attention to a more abstract approach, which is beyond the scope of the paper.


Author(s):  
Chii-Huei Yu

This paper studies the fractional differential problem of fractional functions, regarding the modified Riemann-Liouvellie (R-L) fractional derivatives. A new multiplication and the fractional power series method are used to obtain any order fractional derivatives of some elementary fractional functions.


2020 ◽  
Author(s):  
Francisco Mart nez ◽  
Inmaculada Martinez ◽  
Mohammed Kaabar ◽  
Silvestre Paredes

2020 ◽  
Vol 23 (2) ◽  
pp. 356-377 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Moa’ath N. Oqielat ◽  
Zeyad Al-Zhour ◽  
Shaher Momani

AbstractIn this paper, our formulation generalizes the fractional power series to the matrix form and a new version of the matrix fractional Taylor’s series is also considered in terms of Caputo’s fractional derivative. Moreover, several significant results have been realignment to these generalizations. Finally, to demonstrate the capability and efficiency of our theoretical results, we present the solutions of three linear non-homogenous higher order (m − 1 < α ≤ m, m ∈ N) matrix fractional differential equations by using our new approach.


Author(s):  
Kebede Shigute Kenea

The present study aims to obtain infinite fractional power series solution vectors of fractional Cauchy-Riemann systems equations with initial conditions by the use of vectorial iterative fractional Laplace transform method (VIFLTM). The basic idea of the VIFLTM was developed successfully and applied to four test examples to see its effectiveness and applicability. The infinite fractional power series form solutions were successfully obtained analytically. Thus, the results show that the VIFLTM works successfully in solving fractional Cauchy-Riemann system equations with initial conditions, and hence it can be extended to other fractional differential equations.


Sign in / Sign up

Export Citation Format

Share Document