Finite Element Seismic Response Analysis of a Reinforced Concrete Pier with a Fractured Fine Tetrahedron Mesh

2016 ◽  
Vol 10 (05) ◽  
pp. 1640013
Author(s):  
Shigenobu Okazawa ◽  
Takumi Tsumori ◽  
Takuzo Yamashita ◽  
Satoyuki Tanaka

A seismic response analysis of a reinforced concrete (RC) pier has been undertaken using seismic waves recorded at the Takatori station during the southern Hyogo perfecture earthquake in 1995 in Japan. Distinguishing characteristics of this analysis are as follows. First, the RC pier has been modeled using the finite element method with a solid mesh. The analysis model has been generated using tetrahedral elements with node connectivity, not only in the concrete but also in the reinforcement steel. Also, an analysis has been undertaken on fracture treatments in the concrete. Using PDS-FEM, a system of suitable fractures in the concrete resulting from the seismic event can be simulated. Ultimately, a finite element model is established with a fine tetrahedron mesh with about 20 million elements. We calculate a seismic response analysis using the K computer at the RIKEN Advanced Institute for Computational Science, and compare that result with a seismic experiment in E-Defense to confirm the computational approach.

2013 ◽  
Vol 663 ◽  
pp. 87-91
Author(s):  
Ying Bo Pang

As an effective way of passive damping, isolation technology has been widely used in all types of building structures. Currently, for its theoretical analysis, it usually follows the rigid foundation assumption and ignores soil-structure interaction, which results in calculation results distortion in conducting seismic response analysis. In this paper, three-dimensional finite element method is used to establish finite element analysis model of large chassis single-tower base isolation structure which considers and do not consider soil-structure interaction. The calculation results show that: after considering soil-structure interaction, the dynamic characteristics of the isolation structure, and seismic response are subject to varying degrees of impact.


Author(s):  
Byunghyun Choi ◽  
Akemi Nishida ◽  
Norihiro Nakajima

Research and development of three-dimensional vibration simulation technologies for nuclear facilities is one mission of the Center for Computational Science and e-Systems of the Japan Atomic Energy Agency (JAEA). A seismic intensity of upper 5 was observed in the area of High-Temperature Engineering Test Reactor (HTTR) at the Oarai Research and Development Center of JAEA during the 2011 Tohoku earthquake. In this paper, we report a seismic response analysis of this earthquake using three-dimensional models of the HTTR building. We performed a parametric study by using uncertainty parameters. Furthermore, we examined the variation in the response result for the uncertainty parameters to create a valid 3D finite element model.


2014 ◽  
Vol 912-914 ◽  
pp. 1739-1742
Author(s):  
Cai Ying Chen ◽  
Ke Lun Wei ◽  
Gui Qiang Yang

In this paper, using finite element software ANSYSanalyzes seismic respons of Fuyang river aqueduct, respectively establishfinite element model under viscoelastic boundary conditions and elasticboundary conditions, compare and analyze seismic respons of aqueduct structureunder two kinds of boundary conditions. The results show that, compared withelastic boundary conditions, viscoelastic boundary conditions not only cansimulate elastic recovery performance of foundation, but also can realizeinfinite medium radiation damping, and viscoelastic boundary conditions is moreclose to the actual situation.


2011 ◽  
Vol 94-96 ◽  
pp. 1941-1945
Author(s):  
Yi Wu ◽  
Chun Yang ◽  
Jian Cai ◽  
Jian Ming Pan

Elasto-plastic analysis of seismic responses of valve hall structures were carried out by using finite element software, and the effect of seismic waves on the seismic responses of the valve hall structures and suspension equipments were studied. Results show that significant torsional responses of the structure can be found under longitudinal and 3D earthquake actions. Under 3D earthquake actions, the seismic responses of the suspension valves are much more significant than those under 1D earthquake actions, the maximum tensile force of the suspenders is about twice of that under 1D action. The seismic responses of the suspension valves under vertical earthquake actions are much stronger than those under horizontal earthquake actions, when suffering strong earthquake actions; the maximum vertical acceleration of the suspension valves is about 4 times of that under horizontal earthquake actions. It is recommended that the effects of 3D earthquake actions on the structure should be considered in seismic response analysis of the valve hall structure.


2013 ◽  
Vol 48 (1) ◽  
pp. 1-16 ◽  
Author(s):  
B.R. Jayalekshmi ◽  
V.G. Deepthi Poojary ◽  
Katta Venkataramana ◽  
R. Shivashankar

Sign in / Sign up

Export Citation Format

Share Document