A finite element model for seismic response analysis of vertically-damped rocking-columns

2020 ◽  
Vol 219 ◽  
pp. 110894
Author(s):  
Mehrdad Aghagholizadeh
Author(s):  
Byunghyun Choi ◽  
Akemi Nishida ◽  
Norihiro Nakajima

Research and development of three-dimensional vibration simulation technologies for nuclear facilities is one mission of the Center for Computational Science and e-Systems of the Japan Atomic Energy Agency (JAEA). A seismic intensity of upper 5 was observed in the area of High-Temperature Engineering Test Reactor (HTTR) at the Oarai Research and Development Center of JAEA during the 2011 Tohoku earthquake. In this paper, we report a seismic response analysis of this earthquake using three-dimensional models of the HTTR building. We performed a parametric study by using uncertainty parameters. Furthermore, we examined the variation in the response result for the uncertainty parameters to create a valid 3D finite element model.


2016 ◽  
Vol 10 (05) ◽  
pp. 1640013
Author(s):  
Shigenobu Okazawa ◽  
Takumi Tsumori ◽  
Takuzo Yamashita ◽  
Satoyuki Tanaka

A seismic response analysis of a reinforced concrete (RC) pier has been undertaken using seismic waves recorded at the Takatori station during the southern Hyogo perfecture earthquake in 1995 in Japan. Distinguishing characteristics of this analysis are as follows. First, the RC pier has been modeled using the finite element method with a solid mesh. The analysis model has been generated using tetrahedral elements with node connectivity, not only in the concrete but also in the reinforcement steel. Also, an analysis has been undertaken on fracture treatments in the concrete. Using PDS-FEM, a system of suitable fractures in the concrete resulting from the seismic event can be simulated. Ultimately, a finite element model is established with a fine tetrahedron mesh with about 20 million elements. We calculate a seismic response analysis using the K computer at the RIKEN Advanced Institute for Computational Science, and compare that result with a seismic experiment in E-Defense to confirm the computational approach.


2014 ◽  
Vol 912-914 ◽  
pp. 1739-1742
Author(s):  
Cai Ying Chen ◽  
Ke Lun Wei ◽  
Gui Qiang Yang

In this paper, using finite element software ANSYSanalyzes seismic respons of Fuyang river aqueduct, respectively establishfinite element model under viscoelastic boundary conditions and elasticboundary conditions, compare and analyze seismic respons of aqueduct structureunder two kinds of boundary conditions. The results show that, compared withelastic boundary conditions, viscoelastic boundary conditions not only cansimulate elastic recovery performance of foundation, but also can realizeinfinite medium radiation damping, and viscoelastic boundary conditions is moreclose to the actual situation.


2013 ◽  
Vol 663 ◽  
pp. 87-91
Author(s):  
Ying Bo Pang

As an effective way of passive damping, isolation technology has been widely used in all types of building structures. Currently, for its theoretical analysis, it usually follows the rigid foundation assumption and ignores soil-structure interaction, which results in calculation results distortion in conducting seismic response analysis. In this paper, three-dimensional finite element method is used to establish finite element analysis model of large chassis single-tower base isolation structure which considers and do not consider soil-structure interaction. The calculation results show that: after considering soil-structure interaction, the dynamic characteristics of the isolation structure, and seismic response are subject to varying degrees of impact.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengshan Guo ◽  
Jianxin Liao ◽  
Hailong Huang ◽  
Hui Liang ◽  
Deyu Li ◽  
...  

The contraction joints of arch dams with and without shear keys are simplified to be with no-slip condition and with relative sliding condition, respectively. Based on the Lagrange multiplier method, a contact model considering the manner of independent cantilever dead load type with no-slip condition and relative sliding condition is proposed to model the nonlinearities of vertical contraction joins, which is special to the nonlinear analysis of arch dams considering the manner of dead load type. Different from the conventional Gauss iterative method, the strategy of the alternating iterative solution of normal force and tangential force is employed. The parallelization based on overlapping domain decomposition method (ODDM) and explicit message passing using distributed memory parallel computers is employed to improve the computational efficiency. An existing high arch dam with fine finite element model is analyzed to investigate the effect of shear sliding of vertical joints on seismic response of the arch dam. The result shows that the values of maximum principal tensile stress under relative sliding condition are significantly greater than those under no-slip condition.


Sign in / Sign up

Export Citation Format

Share Document