nonlinear seismic response
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 32 (5) ◽  
pp. 1174-1189
Author(s):  
Hongyun Jiao ◽  
Xiuli Du ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Xu Zhao ◽  
...  

2021 ◽  
Author(s):  
Razmyar Ghateh

Elevated water tanks are employed in water distribution facilities in order to provide storage and necessary pressure in water network systems. These structures have demonstrated poor seismic performance in the past earthquakes. In this study, a finite element method is employed for investigating the nonlinear seismic response of reinforced concrete (RC) pedestal in elevated water tanks. A combination of the most commonly constructed tank sizes and pedestal heights in industry are developed and investigated. Pushover analysis is performed in order to construct the pushover curves, establish the overstrength and ductility factor, and evaluate the effect of various parameters such as fundamental period and tank size on the seismic response factors of elevated water tanks. Furthermore, a probabilistic method is implemented to verify the seismic performance and response modification factor of elevated water tanks. The effect of wall openings in the seismic response characteristics of elevated water tanks is investigated as well. Finally, the effect of axial compression on shear strength of RC pedestals is evaluated and compared to nominal shear strength from current guideline and standards. The results of the study show that the tank size, pedestal height, fundamental period, and pedestal height to diameter ratio, could significantly affect the overstrength and ductility factor of RC pedestals. The nonlinear dynamic analysis results reveal that under the maximum considered earthquake (MCE) intensity, light and medium size tank models do not experience significant damages. However, heavy tank size models experience more damage in comparison with light and medium tank sizes. This study shows that the current code response modification factor values are appropriate for light and medium tank sizes; however they need to be modified for heavy tank sizes. The results of this study also reveal that if the pedestal wall openings are designed based on current design guidelines, then nearly identical nonlinear seismic response behaviour is expected from the pedestals with and without openings. Finally, it is shown that the pedestal maximum shear strength calculated by finite element method for the full tank state is higher than the nominal shear strength determined based on the current design guidelines compared to the nominal shear strength from current guideline and standards.


2021 ◽  
Author(s):  
Razmyar Ghateh

Elevated water tanks are employed in water distribution facilities in order to provide storage and necessary pressure in water network systems. These structures have demonstrated poor seismic performance in the past earthquakes. In this study, a finite element method is employed for investigating the nonlinear seismic response of reinforced concrete (RC) pedestal in elevated water tanks. A combination of the most commonly constructed tank sizes and pedestal heights in industry are developed and investigated. Pushover analysis is performed in order to construct the pushover curves, establish the overstrength and ductility factor, and evaluate the effect of various parameters such as fundamental period and tank size on the seismic response factors of elevated water tanks. Furthermore, a probabilistic method is implemented to verify the seismic performance and response modification factor of elevated water tanks. The effect of wall openings in the seismic response characteristics of elevated water tanks is investigated as well. Finally, the effect of axial compression on shear strength of RC pedestals is evaluated and compared to nominal shear strength from current guideline and standards. The results of the study show that the tank size, pedestal height, fundamental period, and pedestal height to diameter ratio, could significantly affect the overstrength and ductility factor of RC pedestals. The nonlinear dynamic analysis results reveal that under the maximum considered earthquake (MCE) intensity, light and medium size tank models do not experience significant damages. However, heavy tank size models experience more damage in comparison with light and medium tank sizes. This study shows that the current code response modification factor values are appropriate for light and medium tank sizes; however they need to be modified for heavy tank sizes. The results of this study also reveal that if the pedestal wall openings are designed based on current design guidelines, then nearly identical nonlinear seismic response behaviour is expected from the pedestals with and without openings. Finally, it is shown that the pedestal maximum shear strength calculated by finite element method for the full tank state is higher than the nominal shear strength determined based on the current design guidelines compared to the nominal shear strength from current guideline and standards.


2021 ◽  
Vol 21 (5) ◽  
pp. 1445-1460
Author(s):  
Ali Rodríguez-Castellanos ◽  
Sonia E. Ruiz ◽  
Edén Bojórquez ◽  
Miguel A. Orellana ◽  
Alfredo Reyes-Salazar

Abstract. For earthquake-resistant design, structural degradation is considered using traditional strength modification factors, which are obtained via the ratio of the nonlinear seismic response of degrading and non-degrading structural single-degree-of-freedom (SDOF) systems. In this paper, with the aim to avoid the nonlinear seismic response to compute strength modification factors, a methodology based on probabilistic seismic hazard analyses (PSHAs), is proposed in order to obtain strength modification factors of design spectra which consider structural degradation through the spectral-shape intensity measure INp. PSHAs using INp to account for structural degradation and Sa(T1), which represents the spectral acceleration associated with the fundamental period and does not consider such degradation, are performed. The ratio of the uniform hazard spectra in terms of INp and Sa(T1), which represent the response of degrading and non-degrading systems, provides new strength modification factors without the need to develop nonlinear time history analysis. A mathematical expression is fitted to the ratios that correspond to systems located in different soil types. The expression is validated by comparing the results with those derived from nonlinear time history analyses of structural systems.


Sign in / Sign up

Export Citation Format

Share Document