Transmission dynamics and optimal control of H7N9 in China

Author(s):  
Liu Yang ◽  
Da Song ◽  
Meng Fan ◽  
Lu Gao

H7N9 avian influenza is a highly pathogenic zoonotic disease. In order to control the disease, many strategies have been adopted in China such as poultry culling, the closure of live poultry markets (LPMs), the vaccination of poultry, and the treatment for humans. Due to the limited resource, it is of paramount significance to achieve the optimal control. In this paper, an epidemic model incorporating the selective culling rate is formulated to investigate the transmission mechanism of H7N9. The threshold dynamics and bifurcation analyses of the model are well investigated. Furthermore, the problem of optimal control is explored in line with Pontryagin’s Maximum Principle, with consideration given to the comprehensive measures. The numerical simulations suggest that the vaccination of poultry and the closure of LPMs are the two most economical and effective measures.

2018 ◽  
Vol 46 (8) ◽  
pp. 3462-3467 ◽  
Author(s):  
Ruchun Liu ◽  
Bin Zhao ◽  
Yelan Li ◽  
Xixing Zhang ◽  
Shuilian Chen ◽  
...  

Three cases of the avian influenza A (H9N2) virus have been documented in Changsha, which is a large city that has nine districts and a population of 7.04 million in central South China. Among these patients, one was a girl and two were boys. The ages of the patients were 9 months, 2 years, and 15 years. Two cases of H9N2 were detected in September, 2015 and one was detected in 2017. Two patients were children who had not reached the age for kindergarten and one was a student. These three cases were all mild and were detected in a sentinel hospital of the Chinese Influenza Surveillance System. We describe the clinical and epidemiological features of the youngest patient with H9N2 in 2017 and the surveillance results of the H9N2 virus in live poultry markets in Changsha. From January 2014 to December 2017, 4212 samples were collected in live poultry markets in Changsha, among which 25.81% (1087/4212) were H9N2-positive. Public health concerns should be addressed for emerging H9N2 virus infection, and more strategies should be performed before this virus mutates to be more transmissible and highly pathogenic.


2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Mai-Juan Ma ◽  
Shan-Hui Chen ◽  
Guo-Lin Wang ◽  
Teng Zhao ◽  
Yan-Hua Qian ◽  
...  

Abstract During 12 recent months of periodic influenza virus surveillance at 9 live poultry markets in Wuxi City China, we identified multiple highly pathogenic H5N6, H5N8, H5N2, and H5N1 avian influenza viruses. The variety of potentially pandemic viruses in this low-risk area is disconcerting and portends an increased pandemic threat.


2019 ◽  
Vol 6 (1) ◽  
pp. e000362 ◽  
Author(s):  
Maged G Hemida ◽  
Daniel Chu ◽  
Adel Abdelaziz ◽  
Abdelmohsen Alnaeem ◽  
Samuel Mo Sheung Chan ◽  
...  

BackgroundAvian influenza viruses are still causing major concern not only to the poultry industry but also to human health across the globe. The live poultry markets and the small-scale local breeding of various species of birds in backyards are still playing important roles in the sustainability of most virulent influenza viruses, especially H5N8.MethodsThe authors investigated an outbreak of highly pathogenic avian influenza H5N8 in backyard flocks in Al Ahsa, Eastern Saudi Arabia that occurred in 2017–2018.ResultsA range of poultry including chickens, ostriches, ducks, pigeons and turkeys were clinically affected. Phylogenetic analysis suggested that this was a common source outbreak caused by a virus closely related to H5N8 viruses causing outbreaks elsewhere in Saudi Arabia in early 2018.ConclusionsSmall backyard flocks are still contributing to the epidemiology and transmission of H5N8.


2021 ◽  
Vol 27 (9) ◽  
pp. 2492-2494
Author(s):  
Jasmine C.M. Turner ◽  
Subrata Barman ◽  
Mohammed M. Feeroz ◽  
M. Kamrul Hasan ◽  
Sharmin Akhtar ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 650-661 ◽  
Author(s):  
Subrata Barman ◽  
Jasmine C. M. Turner ◽  
M. Kamrul Hasan ◽  
Sharmin Akhtar ◽  
Rabeh El-Shesheny ◽  
...  

2020 ◽  
Vol 94 (23) ◽  
Author(s):  
Rabeh El-Shesheny ◽  
John Franks ◽  
Jasmine Turner ◽  
Patrick Seiler ◽  
David Walker ◽  
...  

ABSTRACT The genesis of novel influenza viruses through reassortment poses a continuing risk to public health. This is of particular concern in Bangladesh, where highly pathogenic avian influenza viruses of the A(H5N1) subtype are endemic and cocirculate with other influenza viruses. Active surveillance of avian influenza viruses in Bangladeshi live poultry markets detected three A(H5) genotypes, designated H5N1-R1, H5N1-R2, and H5N2-R3, that arose from reassortment of A(H5N1) clade 2.3.2.1a viruses. The H5N1-R1 and H5N1-R2 viruses contained HA, NA, and M genes from the A(H5N1) clade 2.3.2.1a viruses and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. H5N2-R3 viruses contained the HA gene from circulating A(H5N1) clade 2.3.2.1a viruses, NA and M genes from concurrently circulating A(H9N2) influenza viruses, and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. Representative viruses of all three genotypes and a parental clade 2.3.2.1a strain (H5N1-R0) infected and replicated in mice without prior adaptation; the H5N2-R3 virus replicated to the highest titers in the lung. All viruses efficiently infected and killed chickens. All viruses replicated in inoculated ferrets, but no airborne transmission was detected, and only H5N2-R3 showed limited direct-contact transmission. Our findings demonstrate that although the A(H5N1) viruses circulating in Bangladesh have the capacity to infect and replicate in mammals, they show very limited capacity for transmission. However, reassortment does generate viruses of distinct phenotypes. IMPORTANCE Highly pathogenic avian influenza A(H5N1) viruses have circulated continuously in Bangladesh since 2007, and active surveillance has detected viral evolution driven by mutation and reassortment. Recently, three genetically distinct A(H5N1) reassortant viruses were detected in live poultry markets in Bangladesh. Currently, we cannot assign pandemic risk by only sequencing viruses; it must be conducted empirically. We found that the H5Nx highly pathogenic avian influenza viruses exhibited high virulence in mice and chickens, and one virus had limited capacity to transmit between ferrets, a property considered consistent with a higher zoonotic risk.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Guo-Lin Wang ◽  
Gregory C Gray ◽  
Ji-Ming Chen ◽  
Mai-Juan Ma

Abstract Since the first outbreak of avian influenza A(H7N9) virus in China in early 2013, several interventions to control the transmission of H7N9 virus from poultry to humans have been implemented. Temporarily closing live poultry markets reduced the risk of human infection to an extent, but it did not prevent the spread of the H7N9 virus among poultry, and this spread eventually led to more human cases. Nevertheless, the mass vaccination of poultry after September 2017 has been highly effective in preventing the H7N9 virus infection in both poultry and humans. In light of the emergence of highly pathogenic H7N9 and H7N2 viruses in unimmunized ducks, vaccination among poultry, especially for ducks, should be accompanied with continued surveillance of H7N9 variants and other avian influenza A viruses that could signal a heightened pandemic risk.


2017 ◽  
Vol 17 (03) ◽  
pp. 1750039 ◽  
Author(s):  
Kenan Yildirim ◽  
Seda G. Korpeoglu ◽  
Ismail Kucuk

Optimal boundary control for damping the vibrations in a Mindlin-type beam is considered. Wellposedness and controllability of the system are investigated. A maximum principle is introduced and optimal control function is obtained by means of maximum principle. Also, by using maximum principle, control problem is reduced to solving a system of partial differential equations including state, adjoint variables, which are subject to initial, boundary and terminal conditions. The solution of the system is obtained by using MATLAB. Numerical results are presented in table and graphical forms.


Sign in / Sign up

Export Citation Format

Share Document