HIGH-SPEED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY SIGNAL PROCESSING WITH TIME-DOMAIN INTERPOLATION USING GRAPHICS PROCESSING UNIT

2011 ◽  
Vol 04 (03) ◽  
pp. 325-335 ◽  
Author(s):  
XIQI LI ◽  
GUOHUA SHI ◽  
LING WEI ◽  
ZHIHUA DING ◽  
YUDONG ZHANG

Sensitivity and data processing speed are important in spectral domain Optical Coherence Tomography (SD-OCT) system. To get a higher sensitivity, zero-padding interpolation together with linear interpolation is commonly used to re-sample the interference data in SD-OCT, which limits the data processing speed. Recently, a time-domain interpolation for SD-OCT was proposed. By eliminating the huge Fast Fourier Transform Algorithm (FFT) operations, the operation number of the time-domain interpolation is much less than that of the zero-padding interpolation. In this paper, a numerical simulation is performed to evaluate the computational complexity and the interpolation accuracy. More than six times acceleration is obtained. At the same time, the normalized mean square error (NMSE) results show that the time-domain interpolation method with cut-off length L = 21 and L = 31 can improve about 1.7 dB and 2.1 dB when the distance mismatch is 2.4 mm than that of zero-padding interpolation method with padding times M = 4, respectively. Furthermore, this method can be applied the parallel arithmetic processing because only the data in the cut-off window is processed. By using Graphics Processing Unit (GPU) with compute unified device architecture (CUDA) program model, a frame (400 A-lines × 2048 pixels × 12 bits) data can be processed in 6 ms and the processing capability can be achieved 164,000 line/s for 1024-OCT and 71,000 line/s for 2048-OCT when the cut-off length is 21. Thus, a high-sensitivity and ultra-high data processing SD-OCT is realized.

2011 ◽  
Vol 04 (01) ◽  
pp. 89-95 ◽  
Author(s):  
XIQI LI ◽  
GUOHUA SHI ◽  
YUDONG ZHANG

The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in a lot of medical applications. Recently, a time-domain interpolation method was proposed. This method can get better signal-to-noise ratio (SNR) but much-reduced signal processing time in SD-OCT data processing as compared with the commonly used zero-padding interpolation method. Additionally, the resampled data can be obtained by a few data and coefficients in the cutoff window. Thus, a lot of interpolations can be performed simultaneously. So, this interpolation method is suitable for parallel computing. By using graphics processing unit (GPU) and the compute unified device architecture (CUDA) program model, time-domain interpolation can be accelerated significantly. The computing capability can be achieved more than 250,000 A-lines, 200,000 A-lines, and 160,000 A-lines in a second for 2,048 pixel OCT when the cutoff length is L = 11, L = 21, and L = 31, respectively. A frame SD-OCT data (400A-lines × 2,048 pixel per line) is acquired and processed on GPU in real time. The results show that signal processing time of SD-OCT can be finished in 6.223 ms when the cutoff length L = 21, which is much faster than that on central processing unit (CPU). Real-time signal processing of acquired data can be realized.


2013 ◽  
Vol 53 (1) ◽  
pp. 011005 ◽  
Author(s):  
Jorge Francés ◽  
Sergio Bleda ◽  
Mariela Lázara Álvarez ◽  
Francisco Javier Martínez ◽  
Andres Márquez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document