scholarly journals Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

2017 ◽  
Vol 10 (01) ◽  
pp. 1650027 ◽  
Author(s):  
Mahmut Ozan Gökkan ◽  
Mehmet Engin

Optical parameters (properties) of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC) simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5[Formula: see text] angle to the phantoms. For the illumination of light, a laser light source at 633[Formula: see text]nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE) and evans blue (EB) dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs) in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

2013 ◽  
Vol 59 (6) ◽  
pp. 622-635 ◽  
Author(s):  
I.V. Fedyushkina ◽  
V.S. Skvortsov ◽  
I.V. Romero Reyes ◽  
I.S. Levina

A series of 42 steroid ligands was used to predict a binding affinity to progesterone receptor. The molecules were the derivatives of 16a,17a-cycloalkanoprogesterones. Different methods of prediction were used and analyzed such as CoMFA and artificial neural networks. The best result (Q2=0.91) was obtained for a combination of molecular docking, molecular dynamics simulation and artificial neural networks. A predictive power of the model was validated by a group of 8 pentarans synthesized separately and tested in vitro (R2test=0.77). This model can be used to determine the affinity level of the ligand to progesterone receptor and accurate ranking of binding compounds.


1993 ◽  
Vol 39 (11) ◽  
pp. 2248-2253 ◽  
Author(s):  
P K Sharpe ◽  
H E Solberg ◽  
K Rootwelt ◽  
M Yearworth

Abstract We studied the potential benefit of using artificial neural networks (ANNs) for the diagnosis of thyroid function. We examined two types of ANN architecture and assessed their robustness in the face of diagnostic noise. The thyroid function data we used had previously been studied by multivariate statistical methods and a variety of pattern-recognition techniques. The total data set comprised 392 cases that had been classified according to both thyroid function and 19 clinical categories. All cases had a complete set of results of six laboratory tests (total thyroxine, free thyroxine, triiodothyronine, triiodothyronine uptake test, thyrotropin, and thyroxine-binding globulin). This data set was divided into subsets used for training the networks and for testing their performance; the test subsets contained various proportions of cases with diagnostic noise to mimic real-life diagnostic situations. The networks studied were a multilayer perceptron trained by back-propagation, and a learning vector quantization network. The training data subsets were selected according to two strategies: either training data based on cases with extreme values for the laboratory tests with randomly selected nonextreme cases added, or training cases from very pure functional groups. Both network architectures were efficient irrespective of the type of training data. The correct allocation of cases in test data subsets was 96.4-99.7% when extreme values were used for training and 92.7-98.8% when only pure cases were used.


Sign in / Sign up

Export Citation Format

Share Document