scattering coefficients
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 109)

H-INDEX

43
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Jinal Tapar ◽  
Saurabh Kishen ◽  
Naresh Kumar Emani

Abstract All-dielectric nanophotonics is a rapidly developing and practical alternative to plasmonics for nanoscale optics. The electric and magnetic Mie resonances in high-index low-loss dielectric nanoresonators can be engineered to exhibit unique scattering response. Recently, nanophotonic structures satisfying parity-time (PT) symmetry have been shown to exhibit novel scattering responses beyond what can be achieved from the conventional nanoresonators. The complex interference of the magnetic and electric Mie resonances and lattice modes excited in PT-symmetric nanoantenna arrays give rise to a scattering anomaly called lasing spectral singularity (SS), where the scattering coefficients tend to infinity. In our previous work [1], we demonstrated the existence of lasing spectral singularities in vertically stacked 2D GaInP PT-symmetric metasurface. In this paper, we analyze the direction-sensitive scattering response of the PT-symmetric GaInP metasurface by decomposing the total scattered field into the electric and magnetic multipoles. The far-field scattering response at the singularity is highly asymmetric for incidence from either the gain or loss side and can be tuned by changing the geometry. By analyzing the phase of even- and odd-parity higher order multipoles, we explain the observed scattering response over a broad parameter space in terms of generalized Kerker effect. The interference between the direction-dependent excitation of different order multipoles and the overall 2D-lattice resonance opens a route towards designing a special class of tunable sources exhibiting direction-sensitive emission properties.


2022 ◽  
Vol 52 (1) ◽  
pp. 63-68
Author(s):  
A V Khilov ◽  
V A Shishkova ◽  
E A Sergeeva ◽  
D A Kurakina ◽  
M Yu Kirillin

Abstract An approach to fabricating agar phantoms mimicking spectral optical properties of biological tissues with fluorescent inclusions is proposed, which allows one to imitate the problem of optical visualisation of superficial biological tissues after the administration of a chlorin-based photosensitiser. The different arrangement of a fluorescent layer within a phantom makes it possible to simulate biological tissue in the cases of both topical application and intravenous injection of a photosensitiser. It is shown that absorption and scattering spectra of phantoms are in good agreement with the spectra of real biological tissues in the wavelength range of 500-800 nm. Changes in spectra of absorption and scattering coefficients of phantoms, as well as in their fluorescent properties induced by the addition of a fluorescent marker (chlorinbased photosensitiser) are demonstrated.


2022 ◽  
Vol 52 (1) ◽  
pp. 48-55
Author(s):  
O A Zyuryukina ◽  
M E Shvachkina ◽  
V I Kochubey ◽  
Yu P Sinichkin ◽  
D A Yakovlev

Abstract Using optical coherence tomography, the scattering coefficients of collagen bundles are estimated at different levels of tissue hydration. We test the validity of a simple theoretical model of dehydration changes in the optical characteristics of a collagen bundle, which is considered as a system of parallel cylinders that model the collagen fibrils forming the bundle. The characteristics of scattering by individual scatterers are calculated using the Mie theory. To take into account the cooperative effects caused by the close packing of the scatterers, use is made of the standard packing function for a system of identical cylinders. The theoretical model also relies on a certain empirical law of changes in the hydration level of fibrils with a change in the water content in the tissue, which predetermines changes in the diameter and refractive index of fibrils during dehydration and rehydration of the tissue. It is shown that the theoretical estimates obtained using this model are in good agreement with the experimental data, which makes it possible to consider this model as reliable.


Author(s):  
Mahdiyeh Sadrara ◽  
MirFaez Miri

Abstract We study cloaking of a cluster of electrostatically defined core-shell quantum dots in graphene. Guided by the generalized multiparticle Mie theory, the Dirac electron scattering from a cluster of quantum dots is addressed. Indeed distant quantum dots may experience a sort of individual cloaking. But despite the multiple scattering of an incident electron from a set of adjacent quantum dots, collective cloaking may happen. Via a proper choice of the radii and bias voltages of shells, two most important scattering coefficients and hence the scattering efficiency of the cluster dramatically decrease. Energy-selective electron cloaks are realizable. More importantly, clusters simultaneously transparent to electrons of different energies, are achievable. Being quite sensitive to applied bias voltages, clusters of core-shell quantum dots may be used to develop switches with high on-off ratios.


2021 ◽  
Vol 11 (24) ◽  
pp. 11722
Author(s):  
Cong Han ◽  
Tong Liu ◽  
Zhenhuan Wu ◽  
Guoan Yang

A stiffener attached to a cylindrical shell strongly interferes with the propagation of the acoustic emission (AE) signal from the fault source and reduces the fault detection accuracy. The interaction of AE signals with the stiffener on the cylindrical shell is thoroughly investigated in this paper. Based on the proposed model of the AE signal propagating inside the cylindrical shell with a stiffener, the installation constraints for the sensor are derived, resulting in the separation of the direct signal, the stiffener scattering signal, and other signals in the time domain. On this basis, combinations of the excitation frequency and the stiffener height are simulated, and the reflection and transmission of the AE signal in each case are quantitatively characterized by the scattering coefficients. The results indicate that there is a “T-shaped” transformation of the signal at the stiffener, which evolves into a variety of other modes. Moreover, the reflection and transmission coefficients of the incident AE signal are displayed as a function of the excitation frequency and the height of the stiffener. In addition, the accuracy of the scattering coefficients obtained from the numerical simulations is verified by experiments, and a good consistency between simulation results and experiment results is presented. This work illustrates the propagation characteristics of AE signals in a cylindrical shell with a stiffener, which can be used as guidance for optimizing the spatial arrangement of sensors in AE monitoring.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vahid Heydari ◽  
Zaker Bahreini ◽  
Majid Abdouss

Purpose The harsh environment of space, especially radiation of direct solar rays, can potentially raise the temperature of the spacecraft to harmful levels. Thermal control coatings (TCCs) fix the thermal condition of the spacecraft acceptable for its components. This is possible by diffusely reflecting all effective ultraviolet (UV), visible (VIS) and near infrared (IR) (NIR) wavelengths of solar radiation and emmition of IR energy. The most commonly used TCCs have used ZnO as a pigment, but absorption of the UV light by ZnO pigment can change the ideal condition of these TCCs. The aim of his study is the using the porous ZnO particles as pigment to prevent the UV absorption. Design/methodology/approach To enhance the efficiency of these coatings, in the present study, nano-porous zinc oxide particles were synthesized and used as pigments for white TCCs. Findings The results revealed that the proposed TCC (TPZ), Thermal control coating with porous ZnO had better reflection (scattering) and emittance properties in comparison with the coating using ZnO as a pigment (TZ coating); so this coating had a solar absorptance value equal to 0.141, whereas this value for TZ was 0.150. Furthermore, TPZ showed higher thermal emittance (0.937) in comparison with TZ (0.9). These changes were because of the improvement in the refractive index, shape and surface area of the pigments. The general trend of the scattering coefficients for the prepared coating, as calculated from the Kubelka–Munk equation, showed that scattering was more efficient in the UV region, as compared with the TCC containing ZnO pigments. Originality/value This type of pigment for the first time is evaluated in TCCs.


2021 ◽  
Vol 9 ◽  
Author(s):  
E. Gramsch ◽  
P. Oyola ◽  
F. Reyes ◽  
Y. Vásquez ◽  
M. A. Rubio ◽  
...  

In the last decade, many low-cost monitoring sensors and sensor-networks have been used as an alternative air quality assessment method. It is also well known that these low cost monitors have calibration, accuracy and long term variation problems which require various calibration techniques. In this work PM2.5 and PM10 low cost sensors (Plantower and Nova Fitness) have been tested in five cities under different environmental conditions and compared with collocated standard instruments. Simultaneously, particle composition (organic and black carbon, sulfate, nitrate, chloride, ammonium, and chemical elements) has been measured in the same places to study its influence on the accuracy. The results show a very large variability in the correlation between the low cost sensors and collocated standard instruments depending on the composition and size of particles present in the site. The PM10 correlation coefficient (R2) between the low cost sensor and a collocated regulatory instrument varied from to 0.95 in Temuco to 0.04 in Los Caleos. PM2.5 correlation varied from 0.97 to 0.68 in the same places. It was found that sites that had higher proportion of large particles had lower correlation between the low cost sensor and the regulatory instrument. Sites that had higher relative concentration of organic and black carbon had better correlation because these species are mostly below the 1 μm size range. Sites that had higher sulfate, nitrate or SiO2 concentrations in PM2.5 or PM10 had low correlation most likely because these particles have a scattering coefficients that depends on its size or composition, thus they can be classified incorrectly.


2021 ◽  
Vol 21 (1) ◽  
pp. 58-62
Author(s):  
P.K. SHARMA ◽  
D. KUMAR ◽  
H. S. SRIVASTAVA ◽  
P. PATEL ◽  
T. SIVASANKAR

The study aims to retrieve soil moisture from RISAT-1 hybrid polarimetric SAR data. Although the use of linear polarimetric SAR data has been well understood and documented, but hybrid polarimetric SAR data is grossly under explored and under reported for this purpose. Regression analysis has been carried to develop soil moisture retrieval models and validated the same. The retrieval models have been developed from back scattering coefficients (RH & RV) and m- space decomposition parameters (even bounce, odd bounce, and volume component) generated from RISAT-1 hybrid polarimetric SAR data. A total of three models are analyzed in this work, (i) using both RH &RV, (ii) volume component, and (iii) using even bounce, odd bounce and volume component. The study results showed that the model using m- decomposition derived parameters can provide better accuracy with R2 and RMSE of 0.92 and 2.45 per cent respectively in comparison to other two models.  


2021 ◽  
Vol 2021 (29) ◽  
pp. 328-333
Author(s):  
Davit Gigilashvili ◽  
Philipp Urban ◽  
Jean-Baptiste Thomas ◽  
Marius Pedersen ◽  
Jon Yngve Hardeberg

Translucency optically results from subsurface light transport and plays a considerable role in how objects and materials appear. Absorption and scattering coefficients parametrize the distance a photon travels inside the medium before it gets absorbed or scattered, respectively. Stimuli produced by a material for a distinct viewing condition are perceptually non-uniform w.r.t. these coefficients. In this work, we use multi-grid optimization to embed a non-perceptual absorption-scattering space into a perceptually more uniform space for translucency and lightness. In this process, we rely on A (alpha) as a perceptual translucency metric. Small Euclidean distances in the new space are roughly proportional to lightness and apparent translucency differences measured with A. This makes picking A more practical and predictable, and is a first step toward a perceptual translucency space.


Sign in / Sign up

Export Citation Format

Share Document