scholarly journals Correction: Predicting In Vitro Rumen VFA Production Using CNCPS Carbohydrate Fractions with Multiple Linear Models and Artificial Neural Networks

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119740
Author(s):  
2021 ◽  
Vol 10 (5) ◽  
pp. 293
Author(s):  
Blerina Vika ◽  
Ilir Vika

Albanian economic time series show irregular patterns since the 1990s that may affect economic analyses with linear methods. The purpose of this study is to assess the ability of nonlinear methods in producing forecasts that could improve upon univariate linear models. The latter are represented by the classic autoregressive (AR) technique, which is regularly used as a benchmark in forecasting. The nonlinear family is represented by two methods, i) the logistic smooth transition autoregressive (LSTAR) model as a special form of the time-varying parameter method, and ii) the nonparametric artificial neural networks (ANN) that mimic the brain’s problem solving process. Our analysis focuses on four basic economic indicators – the CPI prices, GDP, the T-bill interest rate and the lek exchange rate – that are commonly used in various macroeconomic models. Comparing the forecast ability of the models in 1, 4 and 8 quarters ahead, we find that nonlinear methods rank on the top for more than 75 percent of the out-of-sample forecasts, led by the feed-forward artificial neural networks. Although the loss differential between linear and nonlinear model forecasts is often found not statistically significant by the Diebold-Mariano test, our results suggest that it can be worth trying various alternatives beyond the linear estimation framework.   Received: 19 June 2021 / Accepted: 25 August 2021 / Published: 5 September 2021


2013 ◽  
Vol 59 (6) ◽  
pp. 622-635 ◽  
Author(s):  
I.V. Fedyushkina ◽  
V.S. Skvortsov ◽  
I.V. Romero Reyes ◽  
I.S. Levina

A series of 42 steroid ligands was used to predict a binding affinity to progesterone receptor. The molecules were the derivatives of 16a,17a-cycloalkanoprogesterones. Different methods of prediction were used and analyzed such as CoMFA and artificial neural networks. The best result (Q2=0.91) was obtained for a combination of molecular docking, molecular dynamics simulation and artificial neural networks. A predictive power of the model was validated by a group of 8 pentarans synthesized separately and tested in vitro (R2test=0.77). This model can be used to determine the affinity level of the ligand to progesterone receptor and accurate ranking of binding compounds.


1993 ◽  
Vol 39 (11) ◽  
pp. 2248-2253 ◽  
Author(s):  
P K Sharpe ◽  
H E Solberg ◽  
K Rootwelt ◽  
M Yearworth

Abstract We studied the potential benefit of using artificial neural networks (ANNs) for the diagnosis of thyroid function. We examined two types of ANN architecture and assessed their robustness in the face of diagnostic noise. The thyroid function data we used had previously been studied by multivariate statistical methods and a variety of pattern-recognition techniques. The total data set comprised 392 cases that had been classified according to both thyroid function and 19 clinical categories. All cases had a complete set of results of six laboratory tests (total thyroxine, free thyroxine, triiodothyronine, triiodothyronine uptake test, thyrotropin, and thyroxine-binding globulin). This data set was divided into subsets used for training the networks and for testing their performance; the test subsets contained various proportions of cases with diagnostic noise to mimic real-life diagnostic situations. The networks studied were a multilayer perceptron trained by back-propagation, and a learning vector quantization network. The training data subsets were selected according to two strategies: either training data based on cases with extreme values for the laboratory tests with randomly selected nonextreme cases added, or training cases from very pure functional groups. Both network architectures were efficient irrespective of the type of training data. The correct allocation of cases in test data subsets was 96.4-99.7% when extreme values were used for training and 92.7-98.8% when only pure cases were used.


Sign in / Sign up

Export Citation Format

Share Document