Independent 2-rainbow domination in trees

2015 ◽  
Vol 08 (02) ◽  
pp. 1550035 ◽  
Author(s):  
J. Amjadi ◽  
N. Dehgardi ◽  
N. Mohammadi ◽  
S. M. Sheikholeslami ◽  
L. Volkmann

A 2-rainbow dominating function (2RDF) on a graph G is a function f from the vertex set V(G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V(G) with f(v) = ∅ the condition ⋃u∈N(v)f(u) = {1, 2} is fulfilled. A 2RDF f is independent 2-rainbow dominating function (I2RDF) if no two vertices assigned nonempty sets are adjacent. The weight of a 2RDF f is the value ω(f) = ∑v∈V |f(v)|. The 2-rainbow domination number γr2(G) (respectively, the independent 2-rainbow domination number ir2(G)) is the minimum weight of a 2RDF (respectively, I2RDF) on G. M. Chellali and N. Jafari Rad [Independent 2-rainbow domination in graphs, to appear in J. Combin. Math. Combin. Comput.] have studied the independent 2-rainbow domination numbers in graphs and posed the following problem: Find a sharp bound for ir2(T) in terms of the order of a tree T. In this paper we prove that for every tree T of order n ≥ 3, [Formula: see text].

Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


Author(s):  
L. Shahbazi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be an integer, and let [Formula: see text] be a graph. A k-rainbow dominating function (or [Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text] such that for very [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] of [Formula: see text] is the value [Formula: see text]. A k-rainbow dominating function [Formula: see text] in a graph with no isolated vertex is called a total k-rainbow dominating function if the subgraph of [Formula: see text] induced by the set [Formula: see text] has no isolated vertices. The total k-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of the total [Formula: see text]-rainbow dominating function on [Formula: see text]. The total k-rainbow reinforcement number of [Formula: see text], denoted by [Formula: see text], is the minimum number of edges that must be added to [Formula: see text] in order to decrease the total k-rainbow domination number. In this paper, we investigate the properties of total [Formula: see text]-rainbow reinforcement number in graphs. In particular, we present some sharp bounds for [Formula: see text] and we determine the total [Formula: see text]-rainbow reinforcement number of some classes of graphs including paths, cycles and complete bipartite graphs.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850034 ◽  
Author(s):  
J. Amjadi ◽  
M. Soroudi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text] and arc set [Formula: see text]. A twin signed total Roman dominating function (TSTRDF) on the digraph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) [Formula: see text] and [Formula: see text] for each [Formula: see text], where [Formula: see text] (respectively [Formula: see text]) consists of all in-neighbors (respectively out-neighbors) of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an in-neighbor [Formula: see text] and an out-neighbor [Formula: see text] with [Formula: see text]. The weight of an TSTRDF [Formula: see text] is [Formula: see text]. The twin signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an TSTRDF on [Formula: see text]. In this paper, we initiate the study of twin signed total Roman domination in digraphs and we present some sharp bounds on [Formula: see text]. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


2017 ◽  
Vol 10 (01) ◽  
pp. 1750004 ◽  
Author(s):  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be a finite and simple digraph. A [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) of a digraph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the set of in-neighbors of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a digraph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a [Formula: see text]RDF of [Formula: see text]. The [Formula: see text]-rainbow reinforcement number [Formula: see text] of a digraph [Formula: see text] is the minimum number of arcs that must be added to [Formula: see text] in order to decrease the [Formula: see text]-rainbow domination number. In this paper, we initiate the study of [Formula: see text]-rainbow reinforcement number in digraphs and we present some sharp bounds for [Formula: see text]. In particular, we determine the [Formula: see text]-rainbow reinforcement number of some classes of digraphs.


Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


2016 ◽  
Vol 47 (3) ◽  
pp. 357-371 ◽  
Author(s):  
Seyed Mahmoud Sheikholeslami ◽  
Asghar Bodaghli ◽  
Lutz Volkmann

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arc set $A(D)$. A twin signed Roman dominating function (TSRDF) on the digraph $D$ is a function $f:V(D)\rightarrow\{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x\in N^-[v]}f(x)\ge 1$ and $\sum_{x\in N^+[v]}f(x)\ge 1$ for each $v\in V(D)$, where $N^-[v]$ (resp. $N^+[v]$) consists of $v$ and all in-neighbors (resp. out-neighbors) of $v$, and (ii) every vertex $u$ for which $f(u)=-1$ has an in-neighbor $v$ and an out-neighbor $w$ for which $f(v)=f(w)=2$. The weight of an TSRDF $f$ is $\omega(f)=\sum_{v\in V(D)}f(v)$. The twin signed Roman domination number $\gamma_{sR}^*(D)$ of $D$ is the minimum weight of an TSRDF on $D$. In this paper, we initiate the study of twin signed Roman domination in digraphs and we present some sharp bounds on $\gamma_{sR}^*(D)$. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


Filomat ◽  
2014 ◽  
Vol 28 (3) ◽  
pp. 615-622 ◽  
Author(s):  
Mohyedin Falahat ◽  
Seyed Sheikholeslami ◽  
Lutz Volkmann

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set {1,2} such that for any vertex v ? V(G) with f (v) = ? the condition Uu?N(v) f(u)= {1,2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ?(f) = ?v?V |f(v)|. The 2-rainbow domination number of a graph G, denoted by r2(G), is the minimum weight of a 2RDF of G. The 2-rainbow domination subdivision number sd?r2(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the 2-rainbow domination number. In this paper we prove that for every simple connected graph G of order n ? 3, sd?r2(G)? 3 + min{d2(v)|v?V and d(v)?2} where d2(v) is the number of vertices of G at distance 2 from v.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650018 ◽  
Author(s):  
N. Dehgardi ◽  
M. Falahat ◽  
S. M. Sheikholeslami ◽  
Abdollah Khodkar

A [Formula: see text]-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of G. The [Formula: see text]-rainbow domination subdivision number [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the 2-rainbow domination number. It is conjectured that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. In this paper, we first prove this conjecture for some classes of graphs and then we prove that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text].


2019 ◽  
Vol 12 (07) ◽  
pp. 2050004
Author(s):  
H. Abdollahzadeh Ahangar ◽  
H. Jahani ◽  
N. Jafari Rad

A 2-rainbow edge dominating function (2REDF) of a graph [Formula: see text] is a function [Formula: see text] from the edge set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any edge [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a 2REDF [Formula: see text] is the value [Formula: see text]. The minimum weight of a 2REDF is the 2-rainbow edge domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of 2-rainbow edge domination in graphs. We present various sharp bounds, exact values and characterizations for the 2-rainbow edge domination number of a graph.


Author(s):  
Davood Bakhshesh

Let [Formula: see text] be a graph with the vertex set [Formula: see text]. A function [Formula: see text] is called a Roman dominating function of [Formula: see text], if every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of a Roman dominating function [Formula: see text] is equal to [Formula: see text]. The minimum weight of a Roman dominating function of [Formula: see text] is called the Roman domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of a variant of Roman dominating functions. A function [Formula: see text] is called an isolate Roman dominating function of [Formula: see text], if [Formula: see text] is a Roman dominating function and there is a vertex [Formula: see text] with [Formula: see text] which is not adjacent to any vertex [Formula: see text] with [Formula: see text]. The minimum weight of an isolate Roman dominating function of [Formula: see text] is called the isolate Roman domination number of [Formula: see text], denoted by [Formula: see text]. We present some upper bound on the isolate Roman domination number of a graph [Formula: see text] in terms of its Roman domination number and its domination number. Moreover, we present some classes of graphs [Formula: see text] with [Formula: see text]. Finally, we show that the decision problem associated with the isolate Roman dominating functions is NP-complete for bipartite graphs and chordal graphs.


Sign in / Sign up

Export Citation Format

Share Document