scholarly journals On k-rainbow domination in middle graphs

Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.

Author(s):  
L. Shahbazi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be an integer, and let [Formula: see text] be a graph. A k-rainbow dominating function (or [Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text] such that for very [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] of [Formula: see text] is the value [Formula: see text]. A k-rainbow dominating function [Formula: see text] in a graph with no isolated vertex is called a total k-rainbow dominating function if the subgraph of [Formula: see text] induced by the set [Formula: see text] has no isolated vertices. The total k-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of the total [Formula: see text]-rainbow dominating function on [Formula: see text]. The total k-rainbow reinforcement number of [Formula: see text], denoted by [Formula: see text], is the minimum number of edges that must be added to [Formula: see text] in order to decrease the total k-rainbow domination number. In this paper, we investigate the properties of total [Formula: see text]-rainbow reinforcement number in graphs. In particular, we present some sharp bounds for [Formula: see text] and we determine the total [Formula: see text]-rainbow reinforcement number of some classes of graphs including paths, cycles and complete bipartite graphs.


2017 ◽  
Vol 10 (01) ◽  
pp. 1750004 ◽  
Author(s):  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be a finite and simple digraph. A [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) of a digraph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the set of in-neighbors of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a digraph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a [Formula: see text]RDF of [Formula: see text]. The [Formula: see text]-rainbow reinforcement number [Formula: see text] of a digraph [Formula: see text] is the minimum number of arcs that must be added to [Formula: see text] in order to decrease the [Formula: see text]-rainbow domination number. In this paper, we initiate the study of [Formula: see text]-rainbow reinforcement number in digraphs and we present some sharp bounds for [Formula: see text]. In particular, we determine the [Formula: see text]-rainbow reinforcement number of some classes of digraphs.


Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650018 ◽  
Author(s):  
N. Dehgardi ◽  
M. Falahat ◽  
S. M. Sheikholeslami ◽  
Abdollah Khodkar

A [Formula: see text]-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of G. The [Formula: see text]-rainbow domination subdivision number [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the 2-rainbow domination number. It is conjectured that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. In this paper, we first prove this conjecture for some classes of graphs and then we prove that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text].


2018 ◽  
Vol 10 (02) ◽  
pp. 1850020 ◽  
Author(s):  
J. Amjadi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text]. A signed total Roman dominating function (STRDF) on a digraph [Formula: see text] is a function [Formula: see text] such that (i) [Formula: see text] for every [Formula: see text], where [Formula: see text] consists of all inner neighbors of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an inner neighbor [Formula: see text] for which [Formula: see text]. The weight of an STRDF [Formula: see text] is [Formula: see text]. The signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an STRDF on [Formula: see text]. A set [Formula: see text] of distinct STRDFs on [Formula: see text] with the property that [Formula: see text] for each [Formula: see text] is called a signed total Roman dominating family (STRD family) (of functions) on [Formula: see text]. The maximum number of functions in an STRD family on [Formula: see text] is the signed total Roman domatic number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of signed total Roman domatic number in digraphs and we present some sharp bounds for [Formula: see text]. In addition, we determine the signed total Roman domatic number of some classes of digraphs.


Filomat ◽  
2014 ◽  
Vol 28 (3) ◽  
pp. 615-622 ◽  
Author(s):  
Mohyedin Falahat ◽  
Seyed Sheikholeslami ◽  
Lutz Volkmann

A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set {1,2} such that for any vertex v ? V(G) with f (v) = ? the condition Uu?N(v) f(u)= {1,2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ?(f) = ?v?V |f(v)|. The 2-rainbow domination number of a graph G, denoted by r2(G), is the minimum weight of a 2RDF of G. The 2-rainbow domination subdivision number sd?r2(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the 2-rainbow domination number. In this paper we prove that for every simple connected graph G of order n ? 3, sd?r2(G)? 3 + min{d2(v)|v?V and d(v)?2} where d2(v) is the number of vertices of G at distance 2 from v.


Author(s):  
Saeed Shaebani ◽  
Saeed Kosari ◽  
Leila Asgharsharghi

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple graph. A restrained [Formula: see text]-rainbow dominating function (R[Formula: see text]RDF) of [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the family of all subsets of [Formula: see text], such that every vertex [Formula: see text] with [Formula: see text] satisfies both of the conditions [Formula: see text] and [Formula: see text] simultaneously, where [Formula: see text] denotes the open neighborhood of [Formula: see text]. The weight of an R[Formula: see text]RDF is the value [Formula: see text]. The restrained[Formula: see text]-rainbow domination number of [Formula: see text], denoted by [Formula: see text], is the minimum weight of an R[Formula: see text]RDF of [Formula: see text]. The restrained[Formula: see text]-rainbow reinforcement number [Formula: see text] of [Formula: see text], is defined to be the minimum number of edges that must be added to [Formula: see text] in order to decrease the restrained [Formula: see text]-rainbow domination number. In this paper, we determine the restrained [Formula: see text]-rainbow reinforcement number of some special classes of graphs. Also, we present some bounds on the restrained [Formula: see text]-rainbow reinforcement number of general graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
Hong Gao ◽  
Changqing Xi ◽  
Yuansheng Yang

We have studied the k-rainbow domination number of C n □ C m for k ≥ 4 (Gao et al. 2019), in which we present the 3-rainbow domination number of C n □ C m , which should be bounded above by the four-rainbow domination number of C n □ C m . Therefore, we give a rough bound on the 3-rainbow domination number of C n □ C m . In this paper, we focus on the 3-rainbow domination number of the Cartesian product of cycles, C n □ C m . A 3-rainbow dominating function (3RDF) f on a given graph G is a mapping from the vertex set to the power set of three colors { 1 , 2 , 3 } in such a way that every vertex that is assigned to the empty set has all three colors in its neighborhood. The weight of a 3RDF on G is the value ω ( f ) = ∑ v ∈ V ( G ) | f ( v ) | . The 3-rainbow domination number, γ r 3 ( G ) , is the minimum weight among all weights of 3RDFs on G. In this paper, we determine exact values of the 3-rainbow domination number of C 3 □ C m and C 4 □ C m and present a tighter bound on the 3-rainbow domination number of C n □ C m for n ≥ 5 .


2015 ◽  
Vol 08 (02) ◽  
pp. 1550035 ◽  
Author(s):  
J. Amjadi ◽  
N. Dehgardi ◽  
N. Mohammadi ◽  
S. M. Sheikholeslami ◽  
L. Volkmann

A 2-rainbow dominating function (2RDF) on a graph G is a function f from the vertex set V(G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V(G) with f(v) = ∅ the condition ⋃u∈N(v)f(u) = {1, 2} is fulfilled. A 2RDF f is independent 2-rainbow dominating function (I2RDF) if no two vertices assigned nonempty sets are adjacent. The weight of a 2RDF f is the value ω(f) = ∑v∈V |f(v)|. The 2-rainbow domination number γr2(G) (respectively, the independent 2-rainbow domination number ir2(G)) is the minimum weight of a 2RDF (respectively, I2RDF) on G. M. Chellali and N. Jafari Rad [Independent 2-rainbow domination in graphs, to appear in J. Combin. Math. Combin. Comput.] have studied the independent 2-rainbow domination numbers in graphs and posed the following problem: Find a sharp bound for ir2(T) in terms of the order of a tree T. In this paper we prove that for every tree T of order n ≥ 3, [Formula: see text].


2020 ◽  
Vol 40 (5) ◽  
pp. 617-627
Author(s):  
Athena Shaminezhad ◽  
Ebrahim Vatandoost

Let \(G\) be a graph and \(f:V (G)\rightarrow P(\{1,2\})\) be a function where for every vertex \(v\in V(G)\), with \(f(v)=\emptyset\) we have \(\bigcup_{u\in N_{G}(v)} f(u)=\{1,2\}\). Then \(f\) is a \(2\)-rainbow dominating function or a \(2RDF\) of \(G\). The weight of \(f\) is \(\omega(f)=\sum_{v\in V(G)} |f(v)|\). The minimum weight of all \(2\)-rainbow dominating functions is \(2\)-rainbow domination number of \(G\), denoted by \(\gamma_{r2}(G)\). Let \(G_1\) and \(G_2\) be two copies of a graph G with disjoint vertex sets \(V(G_1)\) and \(V(G_2)\), and let \(\sigma\) be a function from \(V(G_1)\) to \(V(G_2)\). We define the functigraph \(C(G,\sigma)\) to be the graph that has the vertex set \(V(C(G,\sigma)) = V(G_1)\cup V(G_2)\), and the edge set \(E(C(G,\sigma)) = E(G_1)\cup E(G_2 \cup \{uv ; u\in V(G_1), v\in V(G_2), v =\sigma(u)\}\). In this paper, \(2\)-rainbow domination number of the functigraph of \(C(G,\sigma)\) and its complement are investigated. We obtain a general bound for \(\gamma_{r2}(C(G,\sigma))\) and we show that this bound is sharp.


Sign in / Sign up

Export Citation Format

Share Document