scholarly journals On ring-like structures of lattice-Ordered numerical events

Author(s):  
Dietmar Dorninger ◽  
Helmut Länger

Let [Formula: see text] be a set of states of a physical system. The probabilities [Formula: see text] of the occurrence of an event when the system is in different states [Formula: see text] define a function from [Formula: see text] to [Formula: see text] called a numerical event or, more accurately, an [Formula: see text]-probability. Sets of [Formula: see text]-probabilities ordered by the partial order of functions give rise to so-called algebras of [Formula: see text]-probabilities, in particular, to the ones that are lattice-ordered. Among these, there are the [Formula: see text]-algebras known from probability theory and the Hilbert-space logics which are important in quantum-mechanics. Any algebra of [Formula: see text]-probabilities can serve as a quantum-logic, and it is of special interest when this logic turns out to be a Boolean algebra because then the observed physical system will be classical. Boolean algebras are in one-to-one correspondence to Boolean rings, and the question arises to find an analogue correspondence for lattice-ordered algebras of [Formula: see text]-probabilities generalizing the correspondence between Boolean algebras and Boolean rings. We answer this question by defining ring-like structures of events (RLSEs). First, the structure of RLSEs is revealed and Boolean rings among RLSEs are characterized. Then we establish how RLSEs correspond to lattice-ordered algebras of numerical events. Further, functions for associating lattice-ordered algebras of [Formula: see text]-probabilities to RLSEs are studied. It is shown that there are only two ways to assign lattice-ordered algebras of [Formula: see text]-probabilities to RLSEs if one restricts the corresponding mappings to term functions over the underlying orthomodular lattice. These term functions are the very functions by which also the Boolean algebras can be assigned to Boolean rings.

Yap Hian Poh. Postulational study of an axiom system of Boolean algebra. Majallah Tahunan 'Ilmu Pasti—Shu Hsüeh Nien K'an—Bulletin of Mathematical Society of Nanyang University (1960), pp. 94–110. - R. M. Dicker. A set of independent axioms for Boolean algebra. Proceedings of the London Mathematical Society, ser. 3 vol. 13 (1963), pp. 20–30. - P. J. van Albada. A self-dual system of axioms for Boolean algebra. Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, series A vol. 67 (1964), pp. 377–381; also Indagationes mathematicae, vol. 26 (1964), pp. 377–381. - Antonio Diego and Alberto Suárez. Two sets of axioms for Boolean algebras. Portugaliae mathematica, vol. 23 nos. 3–4 (for 1964, pub. 1965), pp. 139–145. (Reprinted from Notas de lógica matemática no. 16, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca 1964, 13 pp.) - P. J. van Albada. Axiomatique des algèbres de Boole. Bulletin de la Société Mathématique de Belgique, vol. 18 (1966), pp. 260–272. - Lawrence J. Dickson. A short axiomatic system for Boolean algebra. Pi Mu Epsilon journal, vol. 4 no. 6 (1967), pp. 253–257. - Leroy J. Dickey. A shorter axiomatic system for Boolean algebra. Pi Mu Epsilon journal, vol. 4 no. 8 (1968), p. 336. - Chinthayamma . Independent postulate sets for Boolean algebra. Pi Mu Epsilon journal, vol. 4 no. 9 (1968), pp. 378–379. - Kiyoshi Iséki. A simple characterization of Boolean rings. Proceedings of the Japan Academy, vol. 44 (1968), pp. 923–924. - Sakiko Ôhashi. On definitions of Boolean rings and distributive lattices. Proceedings of the Japan Academy, vol. 44 (1968), pp. 1015–1017.

1973 ◽  
Vol 38 (4) ◽  
pp. 658-660
Author(s):  
Donald H. Potts

1978 ◽  
Vol 10 (4) ◽  
pp. 725-729 ◽  
Author(s):  
J. V. Corbett

Quantum mechanics is usually described in the terminology of probability theory even though the properties of the probability spaces associated with it are fundamentally different from the standard ones of probability theory. For example, Kolmogorov's axioms are not general enough to encompass the non-commutative situations that arise in quantum theory. There have been many attempts to generalise these axioms to meet the needs of quantum mechanics. The focus of these attempts has been the observation, first made by Birkhoff and von Neumann (1936), that the propositions associated with a quantum-mechanical system do not form a Boolean σ-algebra. There is almost universal agreement that the probability space associated with a quantum-mechanical system is given by the set of subspaces of a separable Hilbert space, but there is disagreement over the algebraic structure that this set represents. In the most popular model for the probability space of quantum mechanics the propositions are assumed to form an orthocomplemented lattice (Mackey (1963), Jauch (1968)). The fundamental concept here is that of a partial order, that is a binary relation that is reflexive and transitive but not symmetric. The partial order is interpreted as embodying the logical concept of implication in the set of propositions associated with the physical system. Although this model provides an acceptable mathematical expression of the probabilistic structure of quantum mechanics in that the subspaces of a separable Hilbert space give a representation of an ortho-complemented lattice, it has several deficiencies which will be discussed later.


1978 ◽  
Vol 10 (04) ◽  
pp. 725-729
Author(s):  
J. V. Corbett

Quantum mechanics is usually described in the terminology of probability theory even though the properties of the probability spaces associated with it are fundamentally different from the standard ones of probability theory. For example, Kolmogorov's axioms are not general enough to encompass the non-commutative situations that arise in quantum theory. There have been many attempts to generalise these axioms to meet the needs of quantum mechanics. The focus of these attempts has been the observation, first made by Birkhoff and von Neumann (1936), that the propositions associated with a quantum-mechanical system do not form a Boolean σ-algebra. There is almost universal agreement that the probability space associated with a quantum-mechanical system is given by the set of subspaces of a separable Hilbert space, but there is disagreement over the algebraic structure that this set represents. In the most popular model for the probability space of quantum mechanics the propositions are assumed to form an orthocomplemented lattice (Mackey (1963), Jauch (1968)). The fundamental concept here is that of a partial order, that is a binary relation that is reflexive and transitive but not symmetric. The partial order is interpreted as embodying the logical concept of implication in the set of propositions associated with the physical system. Although this model provides an acceptable mathematical expression of the probabilistic structure of quantum mechanics in that the subspaces of a separable Hilbert space give a representation of an ortho-complemented lattice, it has several deficiencies which will be discussed later.


1963 ◽  
Vol 6 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Adil Yaqub

The concept of a Boolean ring, as a ring A in which every element is idempotent (i. e., a2 = a for all a in A), was first introduced by Stone [4]. Boolean algebras and Boolean rings, though historically and conceptually different, were shown by Stone to be equationally interdefinable. Indeed, let (A, +, x) be a Boolean ring with unit 1, and let (A, ∪, ∩, ') be a Boolean algebra, where ∩, ∪, ', denote "union", " intersection", and "complement". The equations which convert the Boolean ring into a Boolean algebra are:IConversely, the equations which convert the Boolean algebra into a Boolean ring are:II


1975 ◽  
Vol 19 (3) ◽  
pp. 287-289
Author(s):  
P. G. Spain

Bade, in (1), studied Boolean algebras of projections on Banach spaces and showed that a σ-complete Boolean algebra of projections on a Banach space enjoys properties formally similar to those of a Boolean algebra of projections on Hilbert space. (His exposition is reproduced in (7: XVII).) Edwards and Ionescu Tulcea showed that the weakly closed algebra generated by a σ-complete Boolean algebra of projections can be represented as a von Neumann algebra; and that the representation isomorphism can be chosen to be norm, weakly, and strongly bicontinuous on bounded sets (8): Bade's results were then seen to follow from their Hilbert space counterparts. I show here that it is natural to relax the condition of σ-completeness to weak relative compactness; indeed, a Boolean algebra of projections has σ-completion if and only if it is weakly relatively compact (Theorem 1). Then, following the derivation of the theorem of Edwards and Ionescu Tulcea from the Vidav characterisation of abstract C*-algebras (see (9)), I give a result (Theorem 2) which, with its corollary, includes (1: 2.7, 2.8, 2.9, 2.10, 3.2, 3.3, 4.5).


2019 ◽  
Vol 69 (3) ◽  
pp. 533-540
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract Basic algebras were introduced by Chajda, Halaš and Kühr as a common generalization of MV-algebras and orthomodular lattices, i.e. algebras used for formalization of non-classical logics, in particular the logic of quantum mechanics. These algebras were represented by means of lattices with section involutions. On the other hand, classical logic was formalized by means of Boolean algebras which can be converted into Boolean rings. A natural question arises if a similar representation exists also for basic algebras. Several attempts were already realized by the authors, see the references. Now we show that if a basic algebra is commutative then there exists a representation via certain semirings with involution similarly as it was done for MV-algebras by Belluce, Di Nola and Ferraioli. These so-called basic semirings, their ideals and congruences are studied in the paper.


2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Dietmar Dorninger ◽  
Helmut Länger

AbstractWith many physical processes in which quantum mechanical phenomena can occur, it is essential to take into account a decision mechanism based on measurement data. This can be achieved by means of so-called numerical events, which are specified as follows: Let S be a set of states of a physical system and p(s) the probability of the occurrence of an event when the system is in state $$s\in S$$ s ∈ S . A function $$p:S\rightarrow [0,1]$$ p : S → [ 0 , 1 ] is called a numerical event or alternatively, an S-probability. If a set P of S-probabilities is ordered by the order of real functions, it becomes a poset which can be considered as a quantum logic. In case the logic P is a Boolean algebra, this will indicate that the underlying physical system is a classical one. The goal of this paper is to study sets of S-probabilities which are not far from being Boolean algebras by means of the addition and comparison of functions that occur in these sets. In particular, certain classes of so-called Boolean posets of S-probabilities are characterized and related to each other and descriptions based on sets of states are derived.


2019 ◽  
Vol 383 (23) ◽  
pp. 2729-2738 ◽  
Author(s):  
Bruno G. da Costa ◽  
Ernesto P. Borges

2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.


Sign in / Sign up

Export Citation Format

Share Document