scholarly journals On Boolean posets of numerical events

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Dietmar Dorninger ◽  
Helmut Länger

AbstractWith many physical processes in which quantum mechanical phenomena can occur, it is essential to take into account a decision mechanism based on measurement data. This can be achieved by means of so-called numerical events, which are specified as follows: Let S be a set of states of a physical system and p(s) the probability of the occurrence of an event when the system is in state $$s\in S$$ s ∈ S . A function $$p:S\rightarrow [0,1]$$ p : S → [ 0 , 1 ] is called a numerical event or alternatively, an S-probability. If a set P of S-probabilities is ordered by the order of real functions, it becomes a poset which can be considered as a quantum logic. In case the logic P is a Boolean algebra, this will indicate that the underlying physical system is a classical one. The goal of this paper is to study sets of S-probabilities which are not far from being Boolean algebras by means of the addition and comparison of functions that occur in these sets. In particular, certain classes of so-called Boolean posets of S-probabilities are characterized and related to each other and descriptions based on sets of states are derived.

Author(s):  
Ciaran Hughes ◽  
Joshua Isaacson ◽  
Anastasia Perry ◽  
Ranbel F. Sun ◽  
Jessica Turner

AbstractWe have come a long way from Chap. 10.1007/978-3-030-61601-4_1 To recap on what we have learnt, we have understood important quantum mechanical phenomena such as superposition and measurement (through the Stern-Gerlach and Mach-Zehnder experiments). We have also learnt that while quantum computers can in principle break classical encryption protocols, they can also be used to make new secure channels of communication. Furthermore, we have applied quantum logic gates to qubits to perform quantum computations. With entanglement, we teleported the information in an unknown qubit to another qubit. This is quite a substantial achievement.


2018 ◽  
Vol 68 (3) ◽  
pp. 485-490 ◽  
Author(s):  
Dietmar Dorninger ◽  
Helmut Länger

Abstract Let S be a set of states of a physical system. The probabilities p(s) of the occurrence of an event when the system is in different states s ∈ S define a function from S to [0, 1] called a numerical event or, more precisely, an S-probability. A set of S-probabilities comprising the constant functions 0 and 1 which is structured by means of the addition and order of real functions in such a way that an orthomodular partially ordered set arises is called an algebra of S-probabilities, a structure significant as a quantum-logic with a full set of states. The main goal of this paper is to describe algebraic properties of algebras of S-probabilities through operations with real functions. In particular, we describe lattice characteristics and characterize Boolean features. Moreover, representations by sets are considered and pertinent examples provided.


Author(s):  
Dietmar Dorninger ◽  
Helmut Länger

Let [Formula: see text] be a set of states of a physical system. The probabilities [Formula: see text] of the occurrence of an event when the system is in different states [Formula: see text] define a function from [Formula: see text] to [Formula: see text] called a numerical event or, more accurately, an [Formula: see text]-probability. Sets of [Formula: see text]-probabilities ordered by the partial order of functions give rise to so-called algebras of [Formula: see text]-probabilities, in particular, to the ones that are lattice-ordered. Among these, there are the [Formula: see text]-algebras known from probability theory and the Hilbert-space logics which are important in quantum-mechanics. Any algebra of [Formula: see text]-probabilities can serve as a quantum-logic, and it is of special interest when this logic turns out to be a Boolean algebra because then the observed physical system will be classical. Boolean algebras are in one-to-one correspondence to Boolean rings, and the question arises to find an analogue correspondence for lattice-ordered algebras of [Formula: see text]-probabilities generalizing the correspondence between Boolean algebras and Boolean rings. We answer this question by defining ring-like structures of events (RLSEs). First, the structure of RLSEs is revealed and Boolean rings among RLSEs are characterized. Then we establish how RLSEs correspond to lattice-ordered algebras of numerical events. Further, functions for associating lattice-ordered algebras of [Formula: see text]-probabilities to RLSEs are studied. It is shown that there are only two ways to assign lattice-ordered algebras of [Formula: see text]-probabilities to RLSEs if one restricts the corresponding mappings to term functions over the underlying orthomodular lattice. These term functions are the very functions by which also the Boolean algebras can be assigned to Boolean rings.


2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.


1980 ◽  
Vol 45 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Matatyahu Rubin ◽  
Saharon Shelah

AbstractTheorem 1. (◊ℵ1,) If B is an infinite Boolean algebra (BA), then there is B1, such that ∣ Aut (B1) ≤∣B1∣ = ℵ1 and 〈B1, Aut (B1)〉 ≡ 〈B, Aut(B)〉.Theorem 2. (◊ℵ1) There is a countably compact logic stronger than first-order logic even on finite models.This partially answers a question of H. Friedman. These theorems appear in §§1 and 2.Theorem 3. (a) (◊ℵ1) If B is an atomic ℵ-saturated infinite BA, Ψ Є Lω1ω and 〈B, Aut (B)〉 ⊨Ψ then there is B1, Such that ∣Aut(B1)∣ ≤ ∣B1∣ =ℵ1, and 〈B1, Aut(B1)〉⊨Ψ. In particular if B is 1-homogeneous so is B1. (b) (a) holds for B = P(ω) even if we assume only CH.


1962 ◽  
Vol 5 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Günter Bruns

Let B be a Boolean algebra and let ℳ and n be two systems of subsets of B, both containing all finite subsets of B. Let us assume further that the join ∨M of every set M∊ℳ and the meet ∧N of every set N∊n exist. Several authors have treated the question under which conditions there exists an isomorphism φ between B and a field δ of sets, satisfying the conditions:


2004 ◽  
Vol 40 (2) ◽  
pp. 165-179 ◽  
Author(s):  
ALEXANDER R. PRUSS

The Principle of Sufficient Reason (PSR) says that, necessarily, every contingently true proposition has an explanation. The PSR is the most controversial premise in the cosmological argument for the existence of God. It is likely that one reason why a number of philosophers reject the PSR is that they think there are conceptual counter-examples to it. For instance, they may think, with Peter van Inwagen, that the conjunction of all contingent propositions cannot have an explanation, or they may believe that quantum mechanical phenomena cannot be explained. It may, however, be that these philosophers would be open to accepting a restricted version of the PSR as long as it was not ad hoc. I present a natural restricted version of the PSR that avoids all conceptual counter-examples, and yet that is strong enough to ground a cosmological argument. The restricted PSR says that all explainable true propositions have explanations.


10.37236/4831 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Ashish Mishra ◽  
Murali K. Srinivasan

Let $G$ be a finite group acting on the finite set $X$ such that the corresponding (complex) permutation representation is multiplicity free. There is a natural rank and order preserving action of the wreath product $G\sim S_n$ on the generalized Boolean algebra $B_X(n)$. We explicitly block diagonalize the commutant of this action.


Sign in / Sign up

Export Citation Format

Share Document