scholarly journals Unique range sets of meromorphic functions of non-integer finite order

Author(s):  
Bikash Chakraborty ◽  
Amit Kumar Pal ◽  
Sudip Saha ◽  
Jayanta Kamila

This paper studies the uniqueness of two non-integral finite ordered meromorphic functions with finitely many poles when they share two finite sets. Also, it provides an answer to a question posed by Gross for a particular class of meromorphic functions. Moreover, some observations are made on some results due to Sahoo and Karmakar, Acta Univ. Sapient. Math., doi:10.2478/ausm-2018-0025; Sahoo and Sarkar, Bol. Soc. Mat. Mex., doi:10.1007/s40590-019-00260-4.

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Jianming Qi ◽  
Jie Ding ◽  
Wenjun Yuan

We study the value distribution of a special class difference polynomial about finite order meromorphic function. Our methods of the proof are also different from ones in the previous results by Chen (2011), Liu and Laine (2010), and Liu and Yang (2009).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


2020 ◽  
Vol 54 (2) ◽  
pp. 172-187
Author(s):  
I.E. Chyzhykov ◽  
A.Z. Mokhon'ko

We established new sharp estimates outside exceptional sets for of the logarithmic derivatives $\frac{d^ {k} \log f(z)}{dz^k}$ and its generalization $\frac{f^{(k)}(z)}{f^{(j)}(z)}$, where $f$ is a meromorphic function $f$ in the upper half-plane, $k>j\ge0$ are integers. These estimates improve known estimates due to the second author in the class of meromorphic functions of finite order.Examples show that size of exceptional sets are best possible in some sense.


2021 ◽  
Vol 18 (1) ◽  
pp. 1-11
Author(s):  
Andriy Bandura

We present a generalization of concept of bounded $l$-index for meromorphic functions of finite order. Using known results for entire functions of bounded $l$-index we obtain similar propositions for meromorphic functions. There are presented analogs of Hayman's theorem and logarithmic criterion for this class. The propositions are widely used to investigate $l$-index boundedness of entire solutions of differential equations. Taking this into account we raise a general problem of generalization of some results from theory of entire functions of bounded $l$-index by meromorphic functions of finite order and their applications to meromorphic solutions of differential equations. There are deduced sufficient conditions providing $l$-index boundedness of meromoprhic solutions of finite order for the Riccati differential equation. Also we proved that the Weierstrass $\wp$-function has bounded $l$-index with $l(z)=|z|.$


Author(s):  
Bao Qin Li

Abstract We give a characterization of the ratio of two Dirichelt series convergent in a right half-plane under an analytic condition, which is applicable to a uniqueness problem for Dirichlet series admitting analytic continuation in the complex plane as meromorphic functions of finite order; uniqueness theorems are given in terms of a-points of the functions.


Analysis ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 1-10
Author(s):  
Veena L. Pujari

AbstractIn this paper, we prove the analogous result of Fang [1] for transcendentalE-valued meromorphic functions of finite order, which generalizes and improves the result of Wu [6].


1995 ◽  
Vol 52 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Hong-Xun Yi

In 1976, Gross posed the question “can one find two (or possibly even one) finite sets Sj (j = 1, 2) such that any two entire functions f and g satisfying Ef(Sj) = Eg(Sj) for j = 1,2 must be identical?”, where Ef(Sj) stands for the inverse image of Sj under f. In this paper, we show that there exists a finite set S with 11 elements such that for any two non-constant meromorphic functions f and g the conditions Ef(S) = Eg(S) and Ef({∞}) = Eg({∞}) imply f ≡ g. As a special case this also answers the question posed by Gross.


Sign in / Sign up

Export Citation Format

Share Document