On the distance and distance signless Laplacian eigenvalues of graphs and the smallest Gersgorin disc

2018 ◽  
Vol 34 ◽  
pp. 191-204 ◽  
Author(s):  
Fouzul Atik ◽  
Pratima Panigrahi

The \emph{distance matrix} of a simple connected graph $G$ is $D(G)=(d_{ij})$, where $d_{ij}$ is the distance between the $i$th and $j$th vertices of $G$. The \emph{distance signless Laplacian matrix} of the graph $G$ is $D_Q(G)=D(G)+Tr(G)$, where $Tr(G)$ is a diagonal matrix whose $i$th diagonal entry is the transmission of the vertex $i$ in $G$. In this paper, first, upper and lower bounds for the spectral radius of a nonnegative matrix are constructed. Applying this result, upper and lower bounds for the distance and distance signless Laplacian spectral radius of graphs are given, and the extremal graphs for these bounds are obtained. Also, upper bounds for the modulus of all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius of graphs are given. These bounds are probably first of their kind as the authors do not find in the literature any bound for these eigenvalues. Finally, for some classes of graphs, it is shown that all distance (respectively, distance signless Laplacian) eigenvalues other than the distance (respectively, distance signless Laplacian) spectral radius lie in the smallest Ger\^sgorin disc of the distance (respectively, distance signless Laplacian) matrix.

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 792
Author(s):  
Luis Medina ◽  
Hans Nina ◽  
Macarena Trigo

In this article, we find sharp lower bounds for the spectral radius of the distance signless Laplacian matrix of a simple undirected connected graph and we apply these results to obtain sharp upper bounds for the distance signless Laplacian energy graph. The graphs for which those bounds are attained are characterized.


2011 ◽  
Vol 03 (02) ◽  
pp. 185-191 ◽  
Author(s):  
YA-HONG CHEN ◽  
RONG-YING PAN ◽  
XIAO-DONG ZHANG

The signless Laplacian matrix of a graph is the sum of its degree diagonal and adjacency matrices. In this paper, we present a sharp upper bound for the spectral radius of the adjacency matrix of a graph. Then this result and other known results are used to obtain two new sharp upper bounds for the signless Laplacian spectral radius. Moreover, the extremal graphs which attain an upper bound are characterized.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850066 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Ebrahim Hashemi

The distance signless Laplacian matrix [Formula: see text] of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix whose main entries are the vertex transmissions of [Formula: see text], and the spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of [Formula: see text]. In this paper, first we obtain the [Formula: see text]-eigenvalues of the join of certain regular graphs. Next, we give some new bounds on the distance signless Laplacian spectral radius of a graph [Formula: see text] in terms of graph parameters and characterize the extremal graphs. Utilizing these results we present some upper and lower bounds on the distance signless Laplacian energy of a graph [Formula: see text].


2021 ◽  
Vol 45 (02) ◽  
pp. 299-307
Author(s):  
HANYUAN DENG ◽  
TOMÁŠ VETRÍK ◽  
SELVARAJ BALACHANDRAN

The harmonic index of a conected graph G is defined as H(G) = ∑ uv∈E(G) 2 d(u)+d-(v), where E(G) is the edge set of G, d(u) and d(v) are the degrees of vertices u and v, respectively. The spectral radius of a square matrix M is the maximum among the absolute values of the eigenvalues of M. Let q(G) be the spectral radius of the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) is the diagonal matrix having degrees of the vertices on the main diagonal and A(G) is the (0, 1) adjacency matrix of G. The harmonic index of a graph G and the spectral radius of the matrix Q(G) have been extensively studied. We investigate the relationship between the harmonic index of a graph G and the spectral radius of the matrix Q(G). We prove that for a connected graph G with n vertices, we have ( 2 || ----n----- ||{ 2 (n − 1), if n ≥ 6, -q(G-)- ≤ | 16-, if n = 5, H (G ) || 5 |( 3, if n = 4, and the bounds are best possible.


2019 ◽  
Vol 35 (1) ◽  
pp. 31-40 ◽  
Author(s):  
BILAL A. CHAT ◽  
◽  
HILAL A. GANIE ◽  
S. PIRZADA ◽  
◽  
...  

We consider the skew Laplacian matrix of a digraph −→G obtained by giving an arbitrary direction to the edges of a graph G having n vertices and m edges. We obtain an upper bound for the skew Laplacian spectral radius in terms of the adjacency and the signless Laplacian spectral radius of the underlying graph G. We also obtain upper bounds for the skew Laplacian spectral radius and skew spectral radius, in terms of various parameters associated with the structure of the digraph −→G and characterize the extremal graphs.


10.37236/6683 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Elizandro Max Borba ◽  
Uwe Schwerdtfeger

We consider the signless $p$-Laplacian $Q_p$ of a graph, a generalisation of the quadratic form of the signless Laplacian matrix (the case $p=2$). In analogy to Rayleigh's principle the minimum and maximum of $Q_p$ on the $p$-norm unit sphere are called its smallest and largest eigenvalues, respectively. We show a Perron-Frobenius property and basic inequalites for the largest eigenvalue and provide upper and lower bounds for the smallest eigenvalue in terms of a graph parameter related to the bipartiteness. The latter result generalises bounds by Desai and Rao and, interestingly, at $p=1$ upper and lower bounds coincide.


Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Harishchandra Ramane ◽  
Xueliang Li

The distance signless Laplacian eigenvalues [Formula: see text] of a connected graph [Formula: see text] are the eigenvalues of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we define and investigate the distance signless Laplacian Estrada index of a graph [Formula: see text] as [Formula: see text], and obtain some upper and lower bounds for [Formula: see text] in terms of other graph invariants. We also obtain some relations between [Formula: see text] and the auxiliary distance signless Laplacian energy of [Formula: see text].


2018 ◽  
Vol 10 (03) ◽  
pp. 1850035 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Somnath Paul

The distance signless Laplacian spectral radius of a connected graph [Formula: see text] is the largest eigenvalue of the distance signless Laplacian matrix of [Formula: see text], defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. In this paper, we determine some bounds on the distance signless Laplacian spectral radius of [Formula: see text] based on some graph invariants, and characterize the extremal graphs. In addition, we define distance signless Laplacian energy, similar to that in [J. Yang, L. You and I. Gutman, Bounds on the distance Laplacian energy of graphs, Kragujevac J. Math. 37 (2013) 245–255] and give some bounds on the distance signless Laplacian energy of graphs.


Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4733-4745 ◽  
Author(s):  
Cunxiang Duan ◽  
Ligong Wang ◽  
Peng Xiao ◽  
Xihe Li

Let ?1(G) and q1(G) be the spectral radius and the signless Laplacian spectral radius of a kuniform hypergraph G, respectively. In this paper, we give the lower bounds of d-?1(H) and 2d-q1(H), where H is a proper subgraph of a f (-edge)-connected d-regular (linear) k-uniform hypergraph. Meanwhile, we also give the lower bounds of 2?-q1(G) and ?-?1(G), where G is a nonregular f (-edge)-connected (linear) k-uniform hypergraph with maximum degree ?.


Sign in / Sign up

Export Citation Format

Share Document