laplacian eigenvalues
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 68)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 13 (2) ◽  
pp. 450-467
Author(s):  
S. Pirzada ◽  
Bilal A. Rather ◽  
Rezwan Ul Shaban ◽  
Merajuddin

Abstract For a simple connected graph G of order n having distance signless Laplacian eigenvalues ρ 1 Q ≥ ρ 2 Q ≥ ⋯ ≥ ρ n Q \rho _1^Q \ge \rho _2^Q \ge \cdots \ge \rho _n^Q , the distance signless Laplacian energy DSLE(G) is defined as D S L E ( G ) = ∑ i = 1 n | ρ i Q - 2 W ( G ) n | DSLE\left( G \right) = \sum\nolimits_{i = 1}^n {\left| {\rho _i^Q - {{2W\left( G \right)} \over n}} \right|} where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph Kk ∨ ( Kt∪ Kn−k−t), 1 ≤ t ≤ ⌊ n - k 2 ⌋ 1 \le t \le \left\lfloor {{{n - k} \over 2}} \right\rfloor has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k.


2021 ◽  
Vol 54 ◽  
Author(s):  
Shariefuddin Pirzada ◽  
Saleem Khan

Let $G$ be a connected graph with $n$ vertices, $m$ edges and having diameter $d$. The distance Laplacian matrix $D^{L}$ is defined as $D^L=$Diag$(Tr)-D$, where Diag$(Tr)$ is the diagonal matrix of vertex transmissions and $D$ is the distance matrix of $G$. The distance Laplacian eigenvalues of $G$ are the eigenvalues of $D^{L}$ and are denoted by $\delta_{1}, ~\delta_{1},~\dots,\delta_{n}$. In this paper, we obtain (a) the upper bounds for the sum of $k$ largest and (b) the lower bounds for the sum of $k$ smallest non-zero, distance Laplacian eigenvalues of $G$ in terms of order $n$, diameter $d$ and Wiener index $W$ of $G$. We characterize the extremal cases of these bounds. As a consequence, we also obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of $G$.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Qingyun Tao ◽  
Lixin Tao

The Laplacian energy of a signed graph is defined as the sum of the distance of its Laplacian eigenvalues from its average degree. Two signed graphs of the same order are said to be Laplacian equienergetic if their Laplacian energies are equal. In this paper, we present several infinite families of Laplacian equienergetic signed graphs.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1902
Author(s):  
Milica Anđelić ◽  
Tamara Koledin ◽  
Zoran Stanić

Balanced signed graphs appear in the context of social groups with symmetric relations between individuals where a positive edge represents friendship and a negative edge represents enmities between the individuals. The frustration number f of a signed graph is the size of the minimal set F of vertices whose removal results in a balanced signed graph; hence, a connected signed graph G˙ is balanced if and only if f=0. In this paper, we consider the balance of G˙ via the relationships between the frustration number and eigenvalues of the symmetric Laplacian matrix associated with G˙. It is known that a signed graph is balanced if and only if its least Laplacian eigenvalue μn is zero. We consider the inequalities that involve certain Laplacian eigenvalues, the frustration number f and some related invariants such as the cut size of F and its average vertex degree. In particular, we consider the interplay between μn and f.


Author(s):  
Hilal A. Ganie ◽  
Bilal A. Rather ◽  
S. Pirzada

Let [Formula: see text] be a simple graph with [Formula: see text] vertices, [Formula: see text] edges having Laplacian eigenvalues [Formula: see text]. The Laplacian energy LE[Formula: see text] is defined as LE[Formula: see text], where [Formula: see text] is the average degree of [Formula: see text]. Radenković and Gutman conjectured that among all trees of order [Formula: see text], the path graph [Formula: see text] has the smallest Laplacian energy. Let [Formula: see text] be the family of trees of order [Formula: see text] having diameter [Formula: see text]. In this paper, we show that Laplacian energy of any tree [Formula: see text] is greater than the Laplacian energy of [Formula: see text], thereby proving the conjecture for all trees of diameter [Formula: see text]. We also show the truth of conjecture for all trees with number of non-pendent vertices at most [Formula: see text]. Further, we give some sufficient conditions for the conjecture to hold for a tree of order [Formula: see text].


Author(s):  
Avinash Patil ◽  
Kiran Shinde

The zero-divisor graph [Formula: see text] of a commutative ring [Formula: see text] is the graph whose vertices are the nonzero zero divisors in [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. We study the adjacency and Laplacian eigenvalues of the zero-divisor graph [Formula: see text] of a finite commutative von Neumann regular ring [Formula: see text]. We prove that [Formula: see text] is a generalized join of its induced subgraphs. Among the [Formula: see text] eigenvalues (respectively, Laplacian eigenvalues) of [Formula: see text], exactly [Formula: see text] are the eigenvalues of a matrix obtained from the adjacency (respectively, Laplacian) matrix of [Formula: see text]-the zero-divisor graph of nontrivial idempotents in [Formula: see text]. We also determine the degree of each vertex in [Formula: see text], hence the number of edges.


Sign in / Sign up

Export Citation Format

Share Document