Automorphisms of prime-cube order group

2019 ◽  
Vol 11 (03) ◽  
pp. 1950032
Author(s):  
Yi Wang

A graph is called half-arc-transitive if its full automorphism group acts transitively on vertices and edges, but not on arcs. Let [Formula: see text] be a prime-cube order group. In this paper, we determined the structures of the automorphism groups of [Formula: see text], and the result is used to determine the classification of half-arc-transitive graphs of order [Formula: see text] with valency [Formula: see text].

2018 ◽  
Vol 25 (03) ◽  
pp. 493-508 ◽  
Author(s):  
Mimi Zhang ◽  
Jinxin Zhou

Let k, m and n be three positive integers such that 2m ≡ 1 (mod n) and k ≥ 2. The Bouwer graph, which is denoted by B(k, m, n), is the graph with vertex set [Formula: see text] and two vertices being adjacent if they can be written as (a, b) and (a + 1, c), where either c = b or [Formula: see text] differs from [Formula: see text] in exactly one position, say the jth position, where [Formula: see text]. Every B(k, m, n) is a vertex- and edge-transitive graph, and Bouwer proved that B(k, 6, 9) is half-arc-transitive for every k ≥ 2. In 2016, Conder and Žitnik gave the classification of half-arc-transitive Bouwer graphs. In this paper, the full automorphism group of every B(k, m, n) is determined.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2935
Author(s):  
Bo Ling ◽  
Wanting Li ◽  
Bengong Lou

A Cayley graph Γ=Cay(G,S) is said to be normal if the base group G is normal in AutΓ. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group A119. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to A120.


2018 ◽  
Vol 20 (03) ◽  
pp. 1750024 ◽  
Author(s):  
Jin Hong Kim

It has been recently shown by Meng and Zhang that the full automorphism group [Formula: see text] is a Jordan group for all projective varieties in arbitrary dimensions. The aim of this paper is to show that the full automorphism group [Formula: see text] is, in fact, a Jordan group even for all normal compact Kähler varieties in arbitrary dimensions. The meromorphic structure of the identity component of the automorphism group and its Rosenlicht-type decomposition play crucial roles in the proof.


2015 ◽  
Vol 93 (2) ◽  
pp. 238-247
Author(s):  
ZHAOHONG HUANG ◽  
JIANGMIN PAN ◽  
SUYUN DING ◽  
ZHE LIU

Li et al. [‘On finite self-complementary metacirculants’, J. Algebraic Combin.40 (2014), 1135–1144] proved that the automorphism group of a self-complementary metacirculant is either soluble or has $\text{A}_{5}$ as the only insoluble composition factor, and gave a construction of such graphs with insoluble automorphism groups (which are the first examples of self-complementary graphs with this property). In this paper, we will prove that each simple group is a subgroup (so is a section) of the automorphism groups of infinitely many self-complementary vertex-transitive graphs. The proof involves a construction of such graphs. We will also determine all simple sections of the automorphism groups of self-complementary vertex-transitive graphs of $4$-power-free order.


2008 ◽  
Vol 51 (2) ◽  
pp. 261-282 ◽  
Author(s):  
Karl-Hermann Neeb

AbstractAn n-dimensional quantum torus is a twisted group algebra of the group ℤn. It is called rational if all invertible commutators are roots of unity. In the present note we describe a normal form for rational n-dimensional quantum tori over any field. Moreover, we show that for n = 2 the natural exact sequence describing the automorphism group of the quantum torus splits over any field.


10.37236/238 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Edward Dobson ◽  
István Kovács

We calculate the full automorphism group of Cayley digraphs of ${\Bbb Z}_p^3$, $p$ an odd prime, as well as determine the $2$-closed subgroups of $S_m \wr S_p$ with the product action.


2016 ◽  
Vol 15 (03) ◽  
pp. 1650056
Author(s):  
Deepak Gumber ◽  
Hemant Kalra

Let [Formula: see text] be a finite [Formula: see text]-group and let Aut([Formula: see text]) denote the full automorphism group of [Formula: see text]. In the recent past, there has been interest in finding necessary and sufficient conditions on [Formula: see text] such that certain subgroups of Aut([Formula: see text]) are equal. We prove a technical lemma and, as a consequence, obtain some new results and short and alternate proofs of some known results of this type.


2006 ◽  
Vol 81 (2) ◽  
pp. 153-164 ◽  
Author(s):  
Yan-Quan Feng ◽  
Jin Ho Kwak

AbstractAn automorphism group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph. A graph is s-regular if its full automorphism group is s-regular. For a connected cubic symmetric graph X of order 2pn for an odd prime p, we show that if p ≠ 5, 7 then every Sylow p-subgroup of the full automorphism group Aut(X) of X is normal, and if p ≠3 then every s-regular subgroup of Aut(X) having a normal Sylow p-subgroup contains an (s − 1)-regular subgroup for each 1 ≦ s ≦ 5. As an application, we show that every connected cubic symmetric graph of order 2pn is a Cayley graph if p > 5 and we classify the s-regular cubic graphs of order 2p2 for each 1≦ s≦ 5 and each prime p. as a continuation of the authors' classification of 1-regular cubic graphs of order 2p2. The same classification of those of order 2p is also done.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750192
Author(s):  
Yajie Wang ◽  
Shenglin Zhou

Let [Formula: see text] be a subgroup of the full automorphism group of a [Formula: see text]-[Formula: see text] symmetric design [Formula: see text]. If [Formula: see text] is flag-transitive and point-primitive, then Soc[Formula: see text] cannot be [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].


2018 ◽  
Vol 21 (3) ◽  
pp. 397-415 ◽  
Author(s):  
Na-Er Wang ◽  
Roman Nedela ◽  
Kan Hu

Abstract It is well known that the automorphism group of a regular dessin is a two-generator finite group, and the isomorphism classes of regular dessins with automorphism groups isomorphic to a given finite group G are in one-to-one correspondence with the orbits of the action of {{\mathrm{Aut}}(G)} on the ordered generating pairs of G. If there is only one orbit, then up to isomorphism the regular dessin is uniquely determined by the group G and it is called uniquely regular. In this paper we investigate the classification of uniquely regular dessins with a nilpotent automorphism group. The problem is reduced to the classification of finite maximally automorphic p-groups G, i.e., the order of the automorphism group of G attains Hall’s upper bound. Maximally automorphic p-groups of nilpotency class three are classified.


Sign in / Sign up

Export Citation Format

Share Document