Automorphism Groups of Bouwer Graphs

2018 ◽  
Vol 25 (03) ◽  
pp. 493-508 ◽  
Author(s):  
Mimi Zhang ◽  
Jinxin Zhou

Let k, m and n be three positive integers such that 2m ≡ 1 (mod n) and k ≥ 2. The Bouwer graph, which is denoted by B(k, m, n), is the graph with vertex set [Formula: see text] and two vertices being adjacent if they can be written as (a, b) and (a + 1, c), where either c = b or [Formula: see text] differs from [Formula: see text] in exactly one position, say the jth position, where [Formula: see text]. Every B(k, m, n) is a vertex- and edge-transitive graph, and Bouwer proved that B(k, 6, 9) is half-arc-transitive for every k ≥ 2. In 2016, Conder and Žitnik gave the classification of half-arc-transitive Bouwer graphs. In this paper, the full automorphism group of every B(k, m, n) is determined.

2021 ◽  
Vol 7 (2) ◽  
pp. 136
Author(s):  
Ludmila Yu. Tsiovkina

The paper is devoted to the problem of classification of edge-transitive distance-regular antipodal covers of complete graphs. This extends the classification of those covers that are arc-transitive, which has been settled except for some tricky cases that remain to be considered, including the case of covers satisfying condition \(c_2=1\) (which means that every two vertices at distance 2  have exactly one common neighbour).Here it is shown that an edge-transitive distance-regular antipodal cover of a complete graph with \(c_2=1\) is either the second neighbourhood of a vertex in a Moore graph of valency 3 or 7, or a Mathon graph, or a half-transitive graph whose automorphism group induces an affine  \(2\)-homogeneous group on the set of its fibres. Moreover,  distance-regular  antipodal covers of complete graphs  with \(c_2=1\) that admit  an automorphism group acting  \(2\)-homogeneously on the set of fibres (which turns out to be an approximation of the property of edge-transitivity  of such  cover), are described.   A well-known correspondence between distance-regular antipodal covers of complete graphs with \(c_2=1\) and geodetic graphs of diameter two that can be viewed as underlying graphs of certain Moore geometries, allows us to effectively restrict admissible automorphism groups of covers under consideration by combining Kantor's classification of involutory automorphisms of these geometries together with the classification of finite 2-homogeneous permutation groups.


1992 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
László Babai ◽  
Mario Szegedy

A graph is vertex-transitive (edge-transitive) if its automorphism group acts transitively on the vertices (edges, resp.). The expansion rate of a subset S of the vertex set is the quotient e(S):= |∂(S)|/|S|, where ∂(S) denotes the set of vertices not in S but adjacent to some vertex in S. Improving and extending previous results of Aldous and Babai, we give very simple proofs of the following results. Let X be a (finite or infinite) vertex-transitive graph and let S be a finite subset of the vertices. If X is finite, we also assume |S| ≤|V(X)/2. Let d be the diameter of S in the metric induced by X. Then e(S) ≥1/(d + 1); and e(S) ≥ 2/(d +2) if X is finite and d is less than the diameter of X. If X is edge-transitive then |δ(S)|/|S| ≥ r/(2d), where ∂(S) denotes the set of edges joining S to its complement and r is the harmonic mean of the minimum and maximum degrees of X. – Diverse applications of the results are mentioned.


2020 ◽  
Vol 23 (6) ◽  
pp. 1017-1037
Author(s):  
Hong Ci Liao ◽  
Jing Jian Li ◽  
Zai Ping Lu

AbstractA graph is edge-transitive if its automorphism group acts transitively on the edge set. In this paper, we investigate the automorphism groups of edge-transitive graphs of odd order and twice prime valency. Let {\varGamma} be a connected graph of odd order and twice prime valency, and let G be a subgroup of the automorphism group of {\varGamma}. In the case where G acts transitively on the edge set and quasiprimitively on the vertex set of {\varGamma}, we prove that either G is almost simple, or G is a primitive group of affine type. If further G is an almost simple primitive group, then, with two exceptions, the socle of G acts transitively on the edge set of {\varGamma}.


10.37236/1516 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
L. Babai ◽  
P. J. Cameron

Two tournaments $T_1$ and $T_2$ on the same vertex set $X$ are said to be switching equivalent if $X$ has a subset $Y$ such that $T_2$ arises from $T_1$ by switching all arcs between $Y$ and its complement $X\setminus Y$. The main result of this paper is a characterisation of the abstract finite groups which are full automorphism groups of switching classes of tournaments: they are those whose Sylow 2-subgroups are cyclic or dihedral. Moreover, if $G$ is such a group, then there is a switching class $C$, with Aut$(C)\cong G$, such that every subgroup of $G$ of odd order is the full automorphism group of some tournament in $C$. Unlike previous results of this type, we do not give an explicit construction, but only an existence proof. The proof follows as a special case of a result on the full automorphism group of random $G$-invariant digraphs selected from a certain class of probability distributions. We also show that a permutation group $G$, acting on a set $X$, is contained in the automorphism group of some switching class of tournaments with vertex set $X$ if and only if the Sylow 2-subgroups of $G$ are cyclic or dihedral and act semiregularly on $X$. Applying this result to individual permutations leads to an enumeration of switching classes, of switching classes admitting odd permutations, and of tournaments in a switching class. We conclude by remarking that both the class of switching classes of finite tournaments, and the class of "local orders" (that is, tournaments switching-equivalent to linear orders), give rise to countably infinite structures with interesting automorphism groups (by a theorem of Fraïssé).


2019 ◽  
Vol 11 (03) ◽  
pp. 1950032
Author(s):  
Yi Wang

A graph is called half-arc-transitive if its full automorphism group acts transitively on vertices and edges, but not on arcs. Let [Formula: see text] be a prime-cube order group. In this paper, we determined the structures of the automorphism groups of [Formula: see text], and the result is used to determine the classification of half-arc-transitive graphs of order [Formula: see text] with valency [Formula: see text].


Author(s):  
Mahsa Mirzargar

Let G be a nite group. The power graph P(G) of a group G is the graphwhose vertex set is the group elements and two elements are adjacent if one is a power of the other. The commuting graph \Delta(G) of a group G, is the graph whose vertices are the group elements, two of them joined if they commute. When the vertex set is G-Z(G), this graph is denoted by \Gamma(G). Since the results based on the automorphism group of these kinds of graphs are so sporadic, in this paper, we give a survey of all results on the automorphism group of power graphs and commuting graphs obtained in the literature.


2019 ◽  
Vol 22 (4) ◽  
pp. 579-616 ◽  
Author(s):  
Dong-Dong Hou ◽  
Yan-Quan Feng ◽  
Dimitri Leemans

AbstractIn this paper, we prove that for any positive integers {n,s,t} such that {n\geq 10}, {s,t\geq 2} and {n-1\geq s+t}, there exists a regular polytope with Schläfli type {\{2^{s},2^{t}\}} and its automorphism group is of order {2^{n}}. Furthermore, we classify regular polytopes with automorphism groups of order {2^{n}} and Schläfli types {\{4,2^{n-3}\},\{4,2^{n-4}\}} and {\{4,2^{n-5}\}}, therefore giving a partial answer to a problem proposed by Schulte and Weiss in [Problems on polytopes, their groups, and realizations, Period. Math. Hungar. 53 2006, 1–2, 231–255].


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2935
Author(s):  
Bo Ling ◽  
Wanting Li ◽  
Bengong Lou

A Cayley graph Γ=Cay(G,S) is said to be normal if the base group G is normal in AutΓ. The concept of the normality of Cayley graphs was first proposed by M.Y. Xu in 1998 and it plays a vital role in determining the full automorphism groups of Cayley graphs. In this paper, we construct an example of a 2-arc transitive hexavalent nonnormal Cayley graph on the alternating group A119. Furthermore, we determine the full automorphism group of this graph and show that it is isomorphic to A120.


2018 ◽  
Vol 20 (03) ◽  
pp. 1750024 ◽  
Author(s):  
Jin Hong Kim

It has been recently shown by Meng and Zhang that the full automorphism group [Formula: see text] is a Jordan group for all projective varieties in arbitrary dimensions. The aim of this paper is to show that the full automorphism group [Formula: see text] is, in fact, a Jordan group even for all normal compact Kähler varieties in arbitrary dimensions. The meromorphic structure of the identity component of the automorphism group and its Rosenlicht-type decomposition play crucial roles in the proof.


2013 ◽  
Vol 20 (03) ◽  
pp. 495-506 ◽  
Author(s):  
Jin-Xin Zhou ◽  
Mohsen Ghasemi

A Cayley graph Cay (G,S) on a group G with respect to a Cayley subset S is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay (G,S). For a positive integer n, let Γn be a graph with vertex set {xi,yi|i ∈ ℤ2n} and edge set {{xi,xi+1}, {yi,yi+1}, {x2i,y2i+1}, {y2i,x2i+1}|i ∈ ℤ2n}. In this paper, it is shown that Γn is a Cayley graph and its full automorphism group is isomorphic to [Formula: see text] for n=2, and to [Formula: see text] for n > 2. Furthermore, we determine all pairs of G and S such that Γn= Cay (G,S) is non-normal for G. Using this, all connected cubic non-normal Cayley graphs of order 8p are constructed explicitly for each prime p.


Sign in / Sign up

Export Citation Format

Share Document