Some properties of subgroup complementary addition Cayley graphs on abelian groups

Author(s):  
Naveen Palanivel ◽  
Chithra A. Velu

In this paper, we introduce subgroup complementary addition Cayley graph [Formula: see text] and compute its graph invariants. Also, we prove that [Formula: see text] if and only if [Formula: see text] for all [Formula: see text] where [Formula: see text].

1998 ◽  
Vol 57 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Cai Heng Li

For a finite group G and a subset S of G with 1 ∉ S, the Cayley graph Cay(G, S) is the digraph with vertex set G such that (x, y) is an arc if and only if yx−1 ∈ S. The Cayley graph Cay(G, S) is called a CI-graph if, for any T ⊂ G, whenever Cay (G, S) ≅ Cay(G, T) there is an element a σ ∈ Aut(G) such that Sσ = T. For a positive integer m, G is called an m-DCI-group if all Cayley graphs of G of valency at most m are CI-graphs; G is called a connected m-DCI-group if all connected Cayley graphs of G of valency at most m are CI-graphs. The problem of determining Abelian m-DCI-groups is a long-standing open problem. It is known from previous work that all Abelian m-DCI-groups lie in an explicitly determined class of Abelian groups. First we reduce the problem of determining Abelian m-DCI-groups to the problem of determining whether every subgroup of a member of is a connected m-DCI-group. Then (for a finite group G, letting p be the least prime divisor of |G|,) we completely classify Abelian connected (p + 1)-DCI-groups G, and as a corollary, we completely classify Abelian m-DCI-groups G for m ≤ p + 1. This gives many earlier results when p = 2.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniel El-Baz ◽  
Carlo Pagano

Abstract We prove the existence of a limiting distribution for the appropriately rescaled diameters of random undirected Cayley graphs of finite nilpotent groups of bounded rank and nilpotency class, thus extending a result of Shapira and Zuck which dealt with the case of abelian groups. The limiting distribution is defined on a space of unimodular lattices, as in the case of random Cayley graphs of abelian groups. Our result, when specialised to a certain family of unitriangular groups, establishes a very recent conjecture of Hermon and Thomas. We derive this as a consequence of a general inequality, showing that the diameter of a Cayley graph of a nilpotent group is governed by the diameter of its abelianisation.


10.37236/2369 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

It is shown that distance powers of an integral Cayley graph over an abelian group $\Gamma$ are again integral Cayley graphs over $\Gamma$. Moreover, it is proved that distance matrices of integral Cayley graphs over abelian groups have integral spectrum.


2018 ◽  
Vol 49 (3) ◽  
pp. 183-194
Author(s):  
Ali Reza Ashrafi ◽  
Bijan Soleimani

Suppose $p$ and $q$ are odd prime numbers. In this paper, the connected Cayley graph of groups of order $3pq$, for primes $p$ and $q$, are investigated and all connected normal $\frac{1}{2}-$arc-transitive Cayley graphs of group of these orders will be classified.


10.37236/5240 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
István Estélyi ◽  
Tomaž Pisanski

For a finite group $G$ and subset $S$ of $G,$ the Haar graph $H(G,S)$ is a bipartite regular graph, defined as a regular $G$-cover of a dipole with $|S|$ parallel arcs labelled by elements of $S$. If $G$ is an abelian group, then $H(G,S)$ is well-known to be a Cayley graph; however, there are examples of non-abelian groups $G$ and subsets $S$ when this is not the case. In this paper we address the problem of classifying finite non-abelian groups $G$ with the property that every Haar graph $H(G,S)$ is a Cayley graph. An equivalent condition for $H(G,S)$ to be a Cayley graph of a group containing $G$ is derived in terms of $G, S$ and $\mathrm{Aut } G$. It is also shown that the dihedral groups, which are solutions to the above problem, are $\mathbb{Z}_2^2,D_3,D_4$ and $D_{5}$. 


2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Po-Shen Loh ◽  
Leonard J. Schulman

International audience In Random Cayley Graphs and Expanders, N. Alon and Y. Roichman proved that for every ε > 0 there is a finite c(ε ) such that for any sufficiently large group G, the expected value of the second largest (in absolute value) eigenvalue of the normalized adjacency matrix of the Cayley graph with respect to c(ε ) log |G| random elements is less than ε . We reduce the number of elements to c(ε )log D(G) (for the same c), where D(G) is the sum of the dimensions of the irreducible representations of G. In sufficiently non-abelian families of groups (as measured by these dimensions), log D(G) is asymptotically (1/2)log|G|. As is well known, a small eigenvalue implies large graph expansion (and conversely); see Tanner84 and AlonMilman84-2,AlonMilman84-1. For any specified eigenvalue or expansion, therefore, random Cayley graphs (of sufficiently non-abelian groups) require only half as many edges as was previously known.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Monu Kadyan ◽  
Bikash Bhattacharjya

A mixed graph is said to be integral if all the eigenvalues of its Hermitian adjacency matrix are integer. Let $\Gamma$ be an abelian group. The mixed Cayley graph $Cay(\Gamma,S)$ is a mixed graph on the vertex set $\Gamma$ and edge set $\left\{ (a,b): b-a\in S \right\}$, where $0\not\in S$. We characterize integral mixed Cayley graph $Cay(\Gamma,S)$ over an abelian group $\Gamma$ in terms of its connection set $S$.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Assari ◽  
F. Sheikhmiri

A Cayley graph of a group G is called normal edge-transitive if the normalizer of the right representation of the group in the automorphism of the Cayley graph acts transitively on the set of edges of the graph. In this paper, we determine all connected normal edge-transitive Cayley graphs of the group U6n.


Sign in / Sign up

Export Citation Format

Share Document