scholarly journals Isomorphisms of Cayley digraphs of Abelian groups

1998 ◽  
Vol 57 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Cai Heng Li

For a finite group G and a subset S of G with 1 ∉ S, the Cayley graph Cay(G, S) is the digraph with vertex set G such that (x, y) is an arc if and only if yx−1 ∈ S. The Cayley graph Cay(G, S) is called a CI-graph if, for any T ⊂ G, whenever Cay (G, S) ≅ Cay(G, T) there is an element a σ ∈ Aut(G) such that Sσ = T. For a positive integer m, G is called an m-DCI-group if all Cayley graphs of G of valency at most m are CI-graphs; G is called a connected m-DCI-group if all connected Cayley graphs of G of valency at most m are CI-graphs. The problem of determining Abelian m-DCI-groups is a long-standing open problem. It is known from previous work that all Abelian m-DCI-groups lie in an explicitly determined class of Abelian groups. First we reduce the problem of determining Abelian m-DCI-groups to the problem of determining whether every subgroup of a member of is a connected m-DCI-group. Then (for a finite group G, letting p be the least prime divisor of |G|,) we completely classify Abelian connected (p + 1)-DCI-groups G, and as a corollary, we completely classify Abelian m-DCI-groups G for m ≤ p + 1. This gives many earlier results when p = 2.

10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


1998 ◽  
Vol 58 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Cai Heng Li

For a finite group G and a subset S of G which does not contain the identity of G, we use Cay(G, S) to denote the Cayley graph of G with respect to S. For a positive integer m, the group G is called a (connected) m-DCI-group if for any (connected) Cayley graphs Cay(G, S) and Cay(G, T) of out-valency at most m, Sσ = T for some σ ∈ Aut(G) whenever Cay(G, S) ≅ Cay(G, T). Let p(G) be the smallest prime divisor of |G|. It was previously shown that each finite group G is a connected m-DCI-group for m ≤ p(G) − 1 but this is not necessarily true for m = p(G). This leads to a natural question: which groups G are connected p(G)-DCI-groups? Here we conjecture that the answer of this question is positive for finite simple groups, that is, finite simple groups are all connected 2-DCI-groups. We verify this conjecture for the linear groups PSL(2, q). Then we prove that a nonabelian simple group G is a 2-DCI-group if and only if G = A5.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950013
Author(s):  
Alireza Abdollahi ◽  
Maysam Zallaghi

Let [Formula: see text] be a group and [Formula: see text] an inverse closed subset of [Formula: see text]. By a Cayley graph [Formula: see text], we mean the graph whose vertex set is the set of elements of [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text]. A group [Formula: see text] is called a CI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for some automorphism [Formula: see text] of [Formula: see text]. A finite group [Formula: see text] is called a BI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for all positive integers [Formula: see text], where [Formula: see text] denotes the set [Formula: see text]. It was asked by László Babai [Spectra of Cayley graphs, J. Combin. Theory Ser. B 27 (1979) 180–189] if every finite group is a BI-group; various examples of finite non-BI-groups are presented in [A. Abdollahi and M. Zallaghi, Character sums of Cayley graph, Comm. Algebra 43(12) (2015) 5159–5167]. It is noted in the latter paper that every finite CI-group is a BI-group and all abelian finite groups are BI-groups. However, it is known that there are finite abelian non-CI-groups. Existence of a finite non-abelian BI-group which is not a CI-group is the main question which we study here. We find two non-abelian BI-groups of orders 20 and 42 which are not CI-groups. We also list all BI-groups of orders up to 30.


10.37236/5240 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
István Estélyi ◽  
Tomaž Pisanski

For a finite group $G$ and subset $S$ of $G,$ the Haar graph $H(G,S)$ is a bipartite regular graph, defined as a regular $G$-cover of a dipole with $|S|$ parallel arcs labelled by elements of $S$. If $G$ is an abelian group, then $H(G,S)$ is well-known to be a Cayley graph; however, there are examples of non-abelian groups $G$ and subsets $S$ when this is not the case. In this paper we address the problem of classifying finite non-abelian groups $G$ with the property that every Haar graph $H(G,S)$ is a Cayley graph. An equivalent condition for $H(G,S)$ to be a Cayley graph of a group containing $G$ is derived in terms of $G, S$ and $\mathrm{Aut } G$. It is also shown that the dihedral groups, which are solutions to the above problem, are $\mathbb{Z}_2^2,D_3,D_4$ and $D_{5}$. 


2016 ◽  
Vol 15 (07) ◽  
pp. 1650127 ◽  
Author(s):  
Yulong Wei ◽  
Xuanlong Ma ◽  
Kaishun Wang

Let [Formula: see text] be a finite non-abelian group. The non-commuting graph [Formula: see text] of [Formula: see text] has the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text], where [Formula: see text] is the center of [Formula: see text]. We prove that the rainbow [Formula: see text]-connectivity of [Formula: see text] is [Formula: see text]. In particular, the rainbow connection number of [Formula: see text] is [Formula: see text]. Moreover, for any positive integer [Formula: see text], we prove that there exist infinitely many non-abelian groups [Formula: see text] such that the rainbow [Formula: see text]-connectivity of [Formula: see text] is [Formula: see text].


2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].


2013 ◽  
Vol 12 (07) ◽  
pp. 1350037 ◽  
Author(s):  
CRISTINA GARCÍA PILLADO ◽  
SANTOS GONZÁLEZ ◽  
CONSUELO MARTÍNEZ ◽  
VICTOR MARKOV ◽  
ALEXANDER NECHAEV

Let G be a finite group and F a field. We show that all G-codes over F are abelian if the order of G is less than 24, but for F = ℤ5 and G = S4 there exist non-abelian G-codes over F, answering to an open problem posed in [J. J. Bernal, Á. del Río and J. J. Simón, An intrinsical description of group codes, Des. Codes Cryptogr.51(3) (2009) 289–300]. This problem is related to the decomposability of a group as the product of two abelian subgroups. We consider this problem in the case of p-groups, finding the minimal order for which all p-groups of such order are decomposable. Finally, we study if the fact that all G-codes are abelian remains true when the base field is changed.


2020 ◽  
Vol 27 (01) ◽  
pp. 131-136
Author(s):  
Elena V. Konstantinova ◽  
Daria Lytkina

We prove that the spectrum of a Cayley graph over a finite group with a normal generating set S containing with every its element s all generators of the cyclic group 〈s〉 is integral. In particular, a Cayley graph of a 2-group generated by a normal set of involutions is integral. We prove that a Cayley graph over the symmetric group of degree n no less than 2 generated by all transpositions is integral. We find the spectrum of a Cayley graph over the alternating group of degree n no less than 4 with a generating set of 3-cycles of the form (k i j) with fixed k, as {−n+1, 1−n+1, 22 −n+1, …, (n−1)2 −n+1}.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6419-6429 ◽  
Author(s):  
Modjtaba Ghorbani ◽  
Farzaneh Nowroozi-Larki

Let G be a finite group of order pqr where p > q > r > 2 are prime numbers. In this paper, we find the spectrum of Cayley graph Cay(G,S) where S ? G \ {e} is a normal symmetric generating subset.


2013 ◽  
Vol 20 (03) ◽  
pp. 495-506 ◽  
Author(s):  
Jin-Xin Zhou ◽  
Mohsen Ghasemi

A Cayley graph Cay (G,S) on a group G with respect to a Cayley subset S is said to be normal if the right regular representation R(G) of G is normal in the full automorphism group of Cay (G,S). For a positive integer n, let Γn be a graph with vertex set {xi,yi|i ∈ ℤ2n} and edge set {{xi,xi+1}, {yi,yi+1}, {x2i,y2i+1}, {y2i,x2i+1}|i ∈ ℤ2n}. In this paper, it is shown that Γn is a Cayley graph and its full automorphism group is isomorphic to [Formula: see text] for n=2, and to [Formula: see text] for n > 2. Furthermore, we determine all pairs of G and S such that Γn= Cay (G,S) is non-normal for G. Using this, all connected cubic non-normal Cayley graphs of order 8p are constructed explicitly for each prime p.


Sign in / Sign up

Export Citation Format

Share Document