Multi-sensor multi-objective optimization deployment on complex terrain based on Pareto optimal theory

Author(s):  
Gongguo Xu ◽  
Xiusheng Duan ◽  
Ganlin Shan

Multiple optimization objectives are often taken into account during the process of sensor deployment. Aiming at the problem of multi-sensor deployment in complex environment, a novel multi-sensor deployment method based on the multi-objective intelligent search algorithm is proposed. First, the complex terrain is modeled by the multi-attribute grid technology to reduce the computational complexity, and a truncation probability sensing model is presented. Two strategies, the local mutation operation and parameter adaptive operation, are introduced to improve the optimization ability of quantum particle swarm optimization (QPSO) algorithm, and then an improved multi-objective intelligent search algorithm based on QPSO is put forward to get the Pareto optimal front. Then, considering the multi-objective deployment requirements, a novel multi-sensor deployment method based on the multi-objective optimization theory is built. Simulation results show that the proposed method can effectively deal with the problem of multi-sensor deployment and provide more deployment schemes at once. Compared with the traditional algorithms, the Pareto optimal fronts achieved by the improved multi-objective search algorithm perform better on both convergence time and solution diversity aspects.

Author(s):  
H Sayyaadi ◽  
H R Aminian

A regenerative gas turbine cycle with two particular tubular recuperative heat exchangers in parallel is considered for multi-objective optimization. It is assumed that tubular recuperative heat exchangers and its corresponding gas cycle are in design stage simultaneously. Three objective functions including the purchased equipment cost of recuperators, the unit cost rate of the generated power, and the exergetic efficiency of the gas cycle are considered simultaneously. Geometric specifications of the recuperator including tube length, tube outside/inside diameters, tube pitch, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles, and main operating parameters of the gas cycle including the compressor pressure ratio, exhaust temperature of the combustion chamber and the air mass flowrate are considered as decision variables. Combination of these objectives anddecision variables with suitable engineering and physical constraints (including NO x and CO emission limitations) comprises a set of mixed integer non-linear problems. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms, namely non-dominated sorting genetic algorithm. This approach is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained, and a final optimal solution is selected in a decision-making process.


Power loss is the most significant parameter in power system analysis and its adequate calculation directly effects the economic and technical evaluation. This paper aims to propose a multi-objective optimization algorithm which optimizes dc source magnitudes and switching angles to yield minimum THD in cascaded multilevel inverters. The optimization algorithm uses metaheuristic approach, namely Harmony Search algorithm. The effectiveness of the multi-objective algorithm has been tested with 11-level Cascaded H-Bridge Inverter with optimized DC voltage sources using MATLAB/Simulink. As the main objective of this research paper is to analyze total power loss, calculations of power loss are simplified using approximation of curves from datasheet values and experimental measurements. The simulation results, obtained using multi-objective optimization method, have been compared with basic SPWM, optimal minimization of THD, and it is confirmed that the multilevel inverter fired using multi- objective optimization technique has reduced power loss and minimum THD for a wide operating range of multilevel inverter.


2020 ◽  
pp. 105-113
Author(s):  
M. Farsi

The main aim of this research is to present an optimization procedure based on the integration of operability framework and multi-objective optimization concepts to find the single optimal solution of processes. In this regard, the Desired Pareto Index is defined as the ratio of desired Pareto front to the Pareto optimal front as a quantitative criterion to analyze the performance of chemical processes. The Desired Pareto Front is defined as a part of the Pareto front that all outputs are improved compared to the conventional operating condition. To prove the efficiency of proposed optimization method, the operating conditions of ethane cracking process is optimized as a base case. The ethylene and methane production rates are selected as the objectives in the formulated multi-objective optimization problem. Based on the simulation results, applying the obtained operating conditions by the proposed optimization procedure on the ethane cracking process improve ethylene production by about 3% compared to the conventional condition.  


Sign in / Sign up

Export Citation Format

Share Document