Pareto-Optimal Equilibrium Points in non-Cooperative Multi-Objective Optimization Problems

2021 ◽  
pp. 114995
Author(s):  
Mohammadali Saniee Monfared ◽  
Sayyed Ehsan Monabbati ◽  
Atefeh Rajabi Kafshgar
2013 ◽  
Vol 340 ◽  
pp. 136-140
Author(s):  
Liang You Shu ◽  
Ling Xiao Yang

The aim of this paper is to study the production and delivery decision problem in the Manufacturer Order Fulfillment. Owing to the order fulfillment optimization condition of the manufacturer, the multi-objective optimization model of manufacturers' production and delivery has been founded. The solution of the multi-objective optimization model is also very difficult. Fast and Elitist Non-dominated Sorting Genetic Algorithm (NSGA II) have been applied successfully to various test and real-world optimization problems. These population based the algorithm provide a diverse set of non-dominated solutions. The obtained non-dominated set is close to the true Pareto-optimal front. But its convergence to the true Pareto-optimal front is not guaranteed. Hence SBX is used as a local search procedure. The proposed procedure is successfully applied to a special case. The results validate that the algorithm is effective to the multi-objective optimization model.


Author(s):  
Ruhul A. Sarker ◽  
Hussein A. Abbass ◽  
Charles S. Newton

Being capable of finding a set of pareto-optimal solutions in a single run is a necessary feature for multi-criteria decision making, Evolutionary algorithms (EAs) have attracted many researchers and practitioners to address the solution of Multi-objective Optimization Problems (MOPs). In a previous work, we developed a Pareto Differential Evolution (PDE) algorithm to handle multi-objective optimization problems. Despite the overwhelming number of Multi-objective Evolutionary Algorithms (MEAs) in the literature, little work has been done to identify the best MEA using an appropriate assessment methodology. In this chapter, we compare our algorithm with twelve other well-known MEAs, using a popular assessment methodology, by solving two benchmark problems. The comparison shows the superiority of our algorithm over others.


2014 ◽  
Vol 685 ◽  
pp. 667-670 ◽  
Author(s):  
Ding Han ◽  
Jian Rong Zheng

A method which utilizes Kriging model and a multi-point updating strategy is put forward for solving expensive multi-objective optimization problems. Assisted by a defined cheaper multi-objective optimization problem and a maximum average distance criterion, multiple updating points can be found. The proposed method is tested on two numerical functions and a ten-bar truss problem, the results show that the proposed method is efficient in obtaining Pareto optimal solutions with good convergence and diversity when the same computation resource is used comparing with two other methods.


2004 ◽  
Vol 12 (1) ◽  
pp. 77-98 ◽  
Author(s):  
Sanyou Y. Zeng ◽  
Lishan S. Kang ◽  
Lixin X. Ding

In this paper, an orthogonal multi-objective evolutionary algorithm (OMOEA) is proposed for multi-objective optimization problems (MOPs) with constraints. Firstly, these constraints are taken into account when determining Pareto dominance. As a result, a strict partial-ordered relation is obtained, and feasibility is not considered later in the selection process. Then, the orthogonal design and the statistical optimal method are generalized to MOPs, and a new type of multi-objective evolutionary algorithm (MOEA) is constructed. In this framework, an original niche evolves first, and splits into a group of sub-niches. Then every sub-niche repeats the above process. Due to the uniformity of the search, the optimality of the statistics, and the exponential increase of the splitting frequency of the niches, OMOEA uses a deterministic search without blindness or stochasticity. It can soon yield a large set of solutions which converges to the Pareto-optimal set with high precision and uniform distribution. We take six test problems designed by Deb, Zitzler et al., and an engineering problem (W) with constraints provided by Ray et al. to test the new technique. The numerical experiments show that our algorithm is superior to other MOGAS and MOEAs, such as FFGA, NSGAII, SPEA2, and so on, in terms of the precision, quantity and distribution of solutions. Notably, for the engineering problem W, it finds the Pareto-optimal set, which was previously unknown.


1999 ◽  
Vol 7 (3) ◽  
pp. 205-230 ◽  
Author(s):  
Kalyanmoy Deb

In this paper, we study the problem features that may cause a multi-objective genetic algorithm (GA) difficulty in converging to the true Pareto-optimal front. Identification of such features helps us develop difficult test problems for multi-objective optimization. Multi-objective test problems are constructed from single-objective optimization problems, thereby allowing known difficult features of single-objective problems (such as multi-modality, isolation, or deception) to be directly transferred to the corresponding multi-objective problem. In addition, test problems having features specific to multi-objective optimization are also constructed. More importantly, these difficult test problems will enable researchers to test their algorithms for specific aspects of multi-objective optimization.


Sign in / Sign up

Export Citation Format

Share Document