scholarly journals Influence of interface on the formation process of polymer coatings on metal

2016 ◽  
Vol 06 (01) ◽  
pp. 1650004
Author(s):  
O. G. Maksimova ◽  
A. V. Maksimov ◽  
A. I. Moiseeva

The purpose of this work is in development of the model that allows to investigate the conformations of macromolecules near the interface “dielectric-metal” depending on the conditions of formation of the polymer coating. In the modified model of “sticky tape”, one part of macromolecule is anchored to the metal surface while the other can be elongated due to effective mean (molecular) field of dipolar type formed by free ends of other chains. The dynamic Monte-Carlo method for Langmuir’s model is used for calculation of adhesion force taking into account the interaction energy of monomers with the metal surface. It is shown that conformation of polymer chain is defined by temperature conditions of its formation. The obtained results are confirmed by the data of production tests on polymer coatings in JSC “Severstal”.

1983 ◽  
Vol 95 (2) ◽  
pp. 144-148 ◽  
Author(s):  
A.K. Macpherson ◽  
T. Vladimiroff ◽  
W.M. Zdinak

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3934
Author(s):  
Zhijian Ye ◽  
Fanhe Kong ◽  
Baocheng Zhang ◽  
Wei Gao ◽  
Jianfeng Mao

With the growth of air traffic demand in busy airspace, there is an urgent need for airspace sectorization to increase air traffic throughput and ease the pressure on controllers. The purpose of this paper is to develop a method framework that can perform airspace sectorization automatically, reasonably, which can be used as an advisory tool for controllers as an automatic system, especially for eliminating irregular sector shapes generated by simulated annealing algorithm (SAA) based on the region growth method. The two graph cutting method, dynamic Monte Carlo method by changing location of flexible vertices (MC-CLFV) and Monte Carlo method by radius changing (MC-RC) were developed to eliminate irregular sector shapes generated by SAA in post-processing. The experimental results show that the proposed method framework of airspace sectorization (AS) can automatically and reasonably generate sector design schemes that meet the design criteria. Our methodology framework and software can provide assistant design and analysis tools for airspace planners to design airspace, improve the reliability and efficiency of airspace design, and reduce the burden of airspace planners. In addition, this lays the foundation for reconstructing airspace with the more intelligent method.


Acta Numerica ◽  
2018 ◽  
Vol 27 ◽  
pp. 113-206 ◽  
Author(s):  
Nawaf Bou-Rabee ◽  
J. M. Sanz-Serna

This paper surveys in detail the relations between numerical integration and the Hamiltonian (or hybrid) Monte Carlo method (HMC). Since the computational cost of HMC mainly lies in the numerical integrations, these should be performed as efficiently as possible. However, HMC requires methods that have the geometric properties of being volume-preserving and reversible, and this limits the number of integrators that may be used. On the other hand, these geometric properties have important quantitative implications for the integration error, which in turn have an impact on the acceptance rate of the proposal. While at present the velocity Verlet algorithm is the method of choice for good reasons, we argue that Verlet can be improved upon. We also discuss in detail the behaviour of HMC as the dimensionality of the target distribution increases.


2012 ◽  
Vol 479-481 ◽  
pp. 2001-2004
Author(s):  
Zhi Yong Zhang ◽  
Tian Shu Song ◽  
Yang He

A new method is presented in the paper. The fatigue life reliability of submarine cone-cylinder shell is investigated, based on the combination between the methods of conventional Monte Carlo and classical probabilistic fracture mechanics. Firstly, Monte Carlo method is employed to obtain the reliability of given initial fatigue life. Secondly, the two induced factors M1 and M2 in the paper are estimated according to the initial fatigue life and the reliability. Thirdly, based on the two factors, the other fatigue life reliability is obtained by using classical probabilistic fracture mechanics method. Finally, numerical cases show that the proposed method is more efficient without accuracy loss for fatigue life reliability compared with Monte Carlo method. This method can also be applied to predict the fatigue life reliability of analogue structures.


Author(s):  
ZhiJian Ye ◽  
FanHe Kong ◽  
BaoCheng Zhang ◽  
Wei Gao ◽  
JianFeng Mao

With the growth of air traffic demand in busy airspace, there is an urgent need for airspace sectorization to increase air traffic throughput and ease the pressure on controllers. The purpose of this paper is to develop a method framework that can perform airspace sectorization automatically, reasonably, which can be used as an advisory tool for controllers as an automatic system, especially for eliminating irregular sector shapes generated by simulated annealing algorithm (SAA) based on region growth method. Two graph cutting method, dynamic Monte Carlo method by changing location of flexible vertices (MC-CLFV) and Monte Carlo method by radius changing (MC-RC) were developed to eliminating irregular sector shapes generated by SAA in post-processing. The experimental results show that the proposed method framework of AS can automatically and reasonably generate sector design schemes that meet the design criteria. Our methodology framework and software can provide assistant design and analysis tools for airspace planners to design airspace, improve the reliability and efficiency of airspace design, and reduce the burden of airspace planners. In addition, this lays the foundation for reconstructing airspace with more intelligent method.


Sign in / Sign up

Export Citation Format

Share Document