adhesion force
Recently Published Documents


TOTAL DOCUMENTS

1007
(FIVE YEARS 275)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Kaoru Uesugi ◽  
Kazuaki Nagayama ◽  
Euichi Hirose

While nanoscale nipple arrays are expected to reduce light reflection and/or dust contamination in some insects, similar structures have been reported in various marine invertebrates. To evaluate the anti-contamination property of the structure in aquatic regimes, we measured the adsorption and adhesion forces on the flat surface and MOSMITE™ (Mitsubishi Chemical Corporation, Tokyo, Japan), a synthetic material mimicking the nipple array, under water. A small force toward the surface occurred when the probe approached the substrate surface. This adsorption force was significantly smaller on MOSMITE™ than on the flat surface. The adhesion force toward the surface occurred when the probe was detached from the surface, and it was also significantly smaller on MOSMITE™ than on the flat surface. The adhesion force in the air was much greater than the force under water, and the force was also significantly smaller on MOSMITE™ than on the flat surface. In the aquatic regime, the nipple array provides less adsorption/adhesion properties for the surface and thus, the organisms would have less contamination of microparticles on their body surface. As the adsorption and adhesion forces are also involved in the attachment of cells, tissue, and larvae, less adhesive body surfaces should be beneficial for survival in aquatic environments, as well as land environments.


Author(s):  
E.Y. Chen ◽  
Peter Renner ◽  
K. Lee ◽  
Bing Guo ◽  
Hong Liang

Abstract Solar panel cleaning is important to maintain the efficiency of energy production. In this research, we investigated the effects of relative humidity and condensation on the effectiveness of cleaning. The dust particles are subjected to various forces once they are deposited on the surface of a solar panel. When the dust particles continue to build up, they are also subjected to the adhesion forces from the neighboring dust particles. The adhesion forces from the substrates and the neighboring particles are dependent on the ambient conditions. Fundamentally, the interaction between the adhesion force of particle-particle and particle-substrate under various conditions was discussed in this manuscript.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Tomasz Kozior ◽  
Al Mamun ◽  
Marah Trabelsi ◽  
Lilia Sabantina

Three-dimensional printing technologies are mainly used to build objects with complex shapes and geometry, largely prototypes, and thanks to the possibility of building very thin layers of material with small pores, electrospinning technology allows for the creation of structures with filtration properties, in particular very small particles. The combination of these technologies creates new possibilities for building complex-shape composites that have not been comprehensively tested so far. The article describes the results of research on composites manufactured by combining samples prepared with two 3D printing technologies, Fused Filament Fabrication (FFF) and Photo-Curing of Liquid Polymer Resins (PJM) in combination with electrospinning (ES) technology. The surface morphology of composites manufactured from biocompatible materials was investigated using Confocal Laser Scanning Microscopy (CLSM) and contact angle measurements, and chemical composition analysis was studied using Fourier transform infrared spectroscopy (FTIR). This approach to creating composites appears to be an alternative to developing research for filtration applications. The article presents basic research illustrating the quality of composites produced by combining two unconventional technologies: 3D printing and electrospinning (ES). The analysis of the research results showed clear differences in the structure of composites produced with the use of various 3D printing technologies. The CLSM analysis showed a much better orientation of the fibers in the MED610 + PAN/gelatin composite, and the measurement of the contact angle and its indirect interpretation also for this composite allows for the conclusion that it will be characterized by a higher value of adhesion force. Moreover, such composites could be used in the future for the construction of filtering devices and in medical applications.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Ruifang Zhang ◽  
Kai Lv ◽  
Zhaoxin Du ◽  
Weidong Chen ◽  
Pengfei Ji ◽  
...  

In order to improve the wear and corrosion resistance of micro-arc oxidation (MAO) coating on a Ti-5Al-1V-1Sn-1Zr-0.8Mo alloy, 0–0.20 g/L graphene was added to the electrolyte to prepare micro-arc oxidation coating. The thickness, roughness, micro-morphology, and composition of the MAO coating were characterized, and the wear and corrosion resistance of the coating was tested and analyzed. The results show that with 0.05 g/L of graphene in the electrolyte, the roughness of the coating decreased from 56.76 μm to 31.81 μm. With the increase in the addition of graphene, the microstructure of the coating became more compact, the diameter of micro-holes and micro-cracks decreased, and the corrosion resistance of the coating improved. The wear tests showed that the mass loss of the coating at the early wear stage (0~100 revolutions) was greater than that at the later stage (100~250 revolutions), and the wear resistance of the coating obtained by the addition of 0.10 g/L of graphene was the highest. With 0.10 g/L of graphene, the adhesion force between the coating and the substrate alloy is the largest, reaching 57.1 N, which is 9.98 N higher than that without graphene. After salt spray corrosion for 480 h, the coating with graphene has better corrosion resistance than that of a graphene-free coating.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1551
Author(s):  
Majid Salehi ◽  
Pedram Heidari ◽  
Behrooz Ruhani ◽  
Amanj Kheradmand ◽  
Violeta Purcar ◽  
...  

Achieving a compound thin film with uniform thickness and high purity has always been a challenge in the applications concerning micro electro mechanical systems (MEMS). Controlling the adhesion force in micro/nanoscale is also critical. In the present study, a novel method for making a sputtering compound target is proposed for coating Ag–Au thin films with thicknesses of 120 and 500 nm on silicon substrates. The surface topography and adhesion forces of the samples were obtained using atomic force microscope (AFM). Rabinovich and Rumpf models were utilized to measure the adhesion force and compare the results with the obtained experimental values. It was found that the layer with a thickness of 500 nm has a lower adhesion force than the one with 120 nm thickness. The results further indicated that due to surface asperity radius, the adhesion achieved from the Rabinovich model was closer to the experimental values. This novel method for making a compound sputtering target has led to a lower adhesion force which can be useful for coating microgripper surfaces.


Sign in / Sign up

Export Citation Format

Share Document