scholarly journals Dielectric relaxation studies of binary mixture of β-picoline and methanol using time domain reflectometry at different temperatures

2016 ◽  
Vol 06 (03) ◽  
pp. 1650022 ◽  
Author(s):  
C. M. Trivedi ◽  
V. A. Rana ◽  
P. G. Hudge ◽  
A. C. Kumbharkhane

Complex permittivity spectra of binary mixtures of varying concentrations of [Formula: see text]-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity ([Formula: see text]), high frequency limit permittivity ([Formula: see text]) and the relaxation time ([Formula: see text]) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity ([Formula: see text]) and the excess inverse relaxation time (1/[Formula: see text] which contain information regarding molecular structure and interaction between polar–polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich–Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol–fraction of MeOH at all temperatures. The values of excess static permittivity ([Formula: see text]E) and the excess inverse relaxation time (1/[Formula: see text] are negative for the studied [Formula: see text]-picoline — MeOH system at all temperatures.

2007 ◽  
Vol 61 (4) ◽  
Author(s):  
K. Dharmalingam ◽  
K. Ramachandran ◽  
P. Sivagurunathan ◽  
B. Prabhakar Undre ◽  
P. Khirade ◽  
...  

AbstractDielectric relaxation measurements of butyl acrylate—alcohol mixtures at different concentrations and temperatures within the frequency range of 10 MHz to 10 GHz have been carried out using time domain reflectometry. Parameters such as the static permittivity, dielectric relaxation time, the Kirkwood correlation factor, the excess inverse relaxation time, and thermodynamic functions were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The value of the dielectric properties decreases with increasing butyl acrylate concentration in alcohol and systematically varies with the length of alcohol alkyl chain. Negative values of the excess inverse relaxation time found for all concentrations and at all temperatures studied may indicate that the effective dipoles rotate slowly.


Author(s):  
A. R. Lathi

The Complex permittivity of caffeine – Chloroform solution for different temperature and various concentrations have been measured in the range of 10MHZ to 30 GHz using Time Domain Reflectometry. From complex permittivity spectra, Static dielectric constant (εo) and relaxation time (τ) were determined using nonlinear least square fit method. Using Erying rate equation, for different molar concentration of caffeine Enthalpy of Activation ∆H and Entropy of Activation ∆S were determined.


2016 ◽  
Vol 06 (04) ◽  
pp. 1650034
Author(s):  
M. B. Swami ◽  
P. G. Hudge ◽  
V. P. Pawar

The dielectric properties of binary mixtures of benzylamine-1,2,6-hexantriol mixtures at different volume fractions of 1,2,6-hexanetriol have been measured using Time Domain Reflectometry (TDR) technique in the frequency range of 10 MHz to 30 GHz. Complex permittivity spectra were fitted using Havriliak–Negami equation. By using least square fit method the dielectric parameters such as static dielectric constant ([Formula: see text]), dielectric constant at high frequency ([Formula: see text]), relaxation time [Formula: see text] (ps) and relaxation distribution parameter ([Formula: see text]) were extracted from complex permittivity spectra at 25[Formula: see text]C. The intramolecular interaction of different molecules has been discussed using the Kirkwood correlation factor, Bruggeman factor. The Kirkwood correlation factor ([Formula: see text]) and effective Kirkwood correlation factor ([Formula: see text]) indicate the dipole ordering of the binary mixtures.


1986 ◽  
Vol 84 (11) ◽  
pp. 6511-6517 ◽  
Author(s):  
Kazuya Imamatsu ◽  
Ryusuke Nozaki ◽  
Shin Yagihara ◽  
Satoru Mashimo ◽  
Masao Hashimoto

2006 ◽  
Vol 86 (5) ◽  
pp. 291-300 ◽  
Author(s):  
P. Sivagurunathan ◽  
K. Dharmalingam ◽  
K. Ramachandran ◽  
B. Prabhakar Undre ◽  
P. W. Khirade ◽  
...  

2007 ◽  
Vol 23 (10) ◽  
pp. 1508-1515 ◽  
Author(s):  
K RAMACHANDRAN ◽  
P SIVAGURUNATHAN ◽  
K DHARMALINGAM ◽  
S MEHROTRA

Sign in / Sign up

Export Citation Format

Share Document