scholarly journals IMPROVEMENT OF FATIGUE LIFE OF A HOLED SPECIMEN OF ALUMINUM-ALLOY 2024-T3 BY INDENTATION AND HOLE EXPANSION

2012 ◽  
Vol 06 ◽  
pp. 336-342 ◽  
Author(s):  
MD. SHAFIUL FERDOUS ◽  
CHOBIN MAKABE ◽  
TATSUJIRO MIYAZAKI ◽  
NOBUSUKE HATTORI

A method of improving the fatigue life and crack growth behavior of a center holed specimen was investigated. Local plastic deformation was applied around the hole by indentation to achieve the purpose. A series of fatigue tests was conducted on aluminum-alloy 2024-T3. Push-pull tests were performed under a stress ratio of R= -1 and a frequency of 10Hz. The observations of the crack initiation and growth were performed with a microscope, and hardness around the hole was measured by Vickers hardness testing machine. In the present study, the longest fatigue life was observed in the case of an indentation specimen with the highest load. The indentation was performed on both sides of the hole edges. The crack growth rate was decreased by indentation or expansion of the material around the hole. From the experimental results, it is found that the fatigue life and crack growth behavior of a holed or notched specimen can be improved by a simple technical method that is related to the local plastic working.

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1267
Author(s):  
Chunguo Zhang ◽  
Weizhen Song ◽  
Qitao Wang ◽  
Wen Liu

From tensile overload to shot peening, there have been many attempts to extend the fatigue properties of metals. A key challenge with the cold work processes is that it is hard to avoid generation of harmful effects (e.g., the increase of surface roughness caused by shot peening). Pre-stress has a positive effect on improving the fatigue property of metals, and it is expected to strength Al-alloy without introducing adverse factors. Four pre-stresses ranged from 120 to 183 MPa were incorporated in four cracked extended-compact tension specimens by application of different load based on the measured stress–strain curve. Fatigue crack growth behavior and fractured characteristic of the pre-stressed specimens were investigated systematically and were compared with those of an as-received specimen. The results show that the pre-stress ranged from 120 to 183 MPa significantly improved the fatigue resistance of Al-alloy by comparison with that of the as-received specimen. With increasing pre-stress, the fatigue life first increases, then decrease, and the specimen with pre-stress of 158 MPa has the longest fatigue life. For the manner of pre-stress, no adverse factor was observed for increasing fatigue property, and the induced pre-stress reduced gradually till to disappear during subsequent fatigue cycling.


Author(s):  
Tatsuru Misawa ◽  
Takanori Kitada ◽  
Takao Nakamura

Abstract It has been clarified that the fatigue life is decreased in the fatigue test of high-temperature and high-pressure water that simulates PWR reactor coolant environment compared to that in the atmosphere. Temperature, strain rates, dissolved oxygen concentration, etc. affect the decrease of fatigue life. The influence of crack growth behavior on the fatigue life of Type 316 austenitic stainless steel [1] in simulated PWR reactor coolant environment of different temperatures was investigated in this study. Fatigue tests were conducted under different temperatures (200°C and 325°C) in a simulated PWR reactor coolant environment with interrupting, and cracks generated on the specimen surface were observed with two-step replica method. From the results of observation, the influence of crack growth behavior in different temperatures on the fatigue life was clarified. As a result, it was confirmed that the decrease of the fatigue life due to high temperature is mainly caused by the acceleration of crack propagation rate in the depth direction by the increase of crack coalescence frequency due to the increase of crack initiation number and crack propagation rate in the length direction.


Sign in / Sign up

Export Citation Format

Share Document