scholarly journals On the spectrum of random anti-symmetric and tournament matrices

2016 ◽  
Vol 05 (03) ◽  
pp. 1650010
Author(s):  
Philippe Sosoe ◽  
Uzy Smilansky

We consider a discrete, non-Hermitian random matrix model, which can be expressed as a shift of a rank-one perturbation of an anti-symmetric matrix. We show that, asymptotically almost surely, the real parts of the eigenvalues of the non-Hermitian matrix around any fixed index are interlaced with those of the anti-symmetric matrix. Along the way, we show that some tools recently developed to study the eigenvalue distributions of Hermitian matrices extend to the anti-symmetric setting.

Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Alba Grassi ◽  
Zohar Komargodski ◽  
Luigi Tizzano

Abstract We study the correlation functions of Coulomb branch operators of four-dimensional $$ \mathcal{N} $$ N = 2 Superconformal Field Theories (SCFTs). We focus on rank-one theories, such as the SU(2) gauge theory with four fundamental hypermultiplets. “Extremal” correlation functions, involving exactly one anti-chiral operator, are perhaps the simplest nontrivial correlation functions in four-dimensional Quantum Field Theory. We show that the large charge limit of extremal correlators is captured by a “dual” description which is a chiral random matrix model of the Wishart-Laguerre type. This gives an analytic handle on the physics in some particular excited states. In the limit of large random matrices we find the physics of a non-relativistic axion-dilaton effective theory. The random matrix model also admits a ’t Hooft expansion in which the matrix is taken to be large and simultaneously the coupling is taken to zero. This explains why the extremal correlators of SU(2) gauge theory obey a nontrivial double scaling limit in states of large charge. We give an exact solution for the first two orders in the ’t Hooft expansion of the random matrix model and compare with expectations from effective field theory, previous weak coupling results, and we analyze the non-perturbative terms in the strong ’t Hooft coupling limit. Finally, we apply the random matrix theory techniques to study extremal correlators in rank-1 Argyres-Douglas theories. We compare our results with effective field theory and with some available numerical bootstrap bounds.


2005 ◽  
Vol 55 (6) ◽  
pp. 1943-2000 ◽  
Author(s):  
Pavel M. Bleher ◽  
Alexander Its

1995 ◽  
Vol 51 (5) ◽  
pp. 3902-3910 ◽  
Author(s):  
C. Brechignac ◽  
Ph. Cahuzac ◽  
J. Leyginer ◽  
A. Sarfati ◽  
V. M. Akulin

2010 ◽  
Author(s):  
A. J. Martínez-Mendoza ◽  
J. A. Méndez-Bermúdez ◽  
Imre Varga ◽  
Moises Martinez-Mares ◽  
Jose A. Moreno-Razo

Sign in / Sign up

Export Citation Format

Share Document