Electron-Acoustic Mode in a Plasma of Two-Temperature Electrons

1977 ◽  
Vol 43 (5) ◽  
pp. 1819-1820 ◽  
Author(s):  
Kunihiko Watanabe ◽  
Tosiya Taniuti
2004 ◽  
Vol 11 (2) ◽  
pp. 215-218 ◽  
Author(s):  
S. G. Tagare ◽  
S. V. Singh ◽  
R. V. Reddy ◽  
G. S. Lakhina

Abstract. Small amplitude electron - acoustic solitons are studied in a magnetized plasma consisting of two types of electrons, namely cold electron beam and background plasma electrons and two temperature ion plasma. The analysis predicts rarefactive solitons. The model may provide a possible explanation for the perpendicular polarization of the low-frequency component of the broadband electrostatic noise observed in the Earth's magnetotail.


2021 ◽  
Author(s):  
Pavel Shustov ◽  
Anton Artemyev ◽  
Alexander Volokitin ◽  
Ivan Vasko ◽  
Xiao-Jia Zhang ◽  
...  

<p>Recent spacecraft observations of plasma injections reveal abundance of small-scale nonlinear magnetic structures – sub-ion magnetic holes. These structures contribute to magnetosphere-ionosphere coupling and likely responsible for energetic electron scattering. Sub-ion magnetic holes propagate in plasma of two electron components with very different temperatures. Properties of such holes resemble properties of classical magnetosonic solitary waves propagating across the ambient magnetic field, but observations suggest that these holes do not disturb background ions. This study aims to generalize the linear theory of magnetosonic waves by including two electron components. In analog to the electron acoustic mode, cold electrons can act as ions for the generation of magnetosonic mode waves. This unstable electron magnetosonic mode can explain all properties of sub-ion holes in observations. We suggest that sub-ion holes can form during the nonlinear evolution this electron magnetosonic mode. We consider an adiabatic model for investigation of such nonlinear evolution and electron dynamical response to evolving hole electromagnetic field. This model describes slow formation of sub-ion magnetic holes from low-amplitude limit. The adiabatic electron response to such formation can include both electron colling and heating, for populations with different pitch-angles.</p><p>The work was supported by the Russian Scientific Foundation, project 19-12-00313.</p>


2014 ◽  
Vol 81 (1) ◽  
Author(s):  
Manjistha Dutta ◽  
Manoranjan Khan ◽  
Nikhil Chakrabarti

Nonlinear interaction between Langmuir waves and Electron Acoustic Wave (EAW) is being studied in a warm magnetized plasma in presence of two intermingled fluids, hot electrons, and cold electrons while ions forming static background. Two-fluid, two-timescale theory is performed to derive modified Zakharov's equations in a magnetized plasma. These coupled equations describe low-frequency response of electron density due to high-frequency electric field along with magnetic field perturbations. Linear analysis shows coupling between acoustic mode, upper hybrid mode, and cyclotron modes. These modes are found to be modified due to the presence of two electron components. These equations are significant in the context of weak and strong turbulence.


2007 ◽  
Vol 73 (4) ◽  
pp. 433-438 ◽  
Author(s):  
DAE-HAN KI ◽  
YOUNG-DAE JUNG

AbstractThe effects of density and temperature on a surface electron-acoustic plasma wave are investigated in a semi-bounded dusty plasma of two-temperature electrons. The dispersion relation of the surface electron-acoustic plasma wave is obtained by the plasma dielectric function with the specular reflection boundary condition. The phase velocity is found to be decreased when increasing the ratio of the temperature of hot electrons to that of cold electrons for large wave numbers. It is also found that the phase velocity increases with an increase in the ratio of the density of hot electrons to that of cold electrons and that the phase velocity of the surface electron-acoustic wave increases with an increase in the density of the dust grains.


1985 ◽  
Vol 28 (8) ◽  
pp. 2439 ◽  
Author(s):  
S. Peter Gary ◽  
Robert L. Tokar

1999 ◽  
Vol 6 (1) ◽  
pp. 44-49 ◽  
Author(s):  
R. L. Mace ◽  
G. Amery ◽  
M. A. Hellberg

Sign in / Sign up

Export Citation Format

Share Document