scholarly journals Antisymmetrized Folded-Linked-Cluster Expansion for Many-Body Shell Model States

1981 ◽  
Vol 65 (4) ◽  
pp. 1305-1321 ◽  
Author(s):  
M. Nomura
2018 ◽  
Vol 97 (3) ◽  
Author(s):  
Sofia Quaglioni ◽  
Carolina Romero-Redondo ◽  
Petr Navrátil ◽  
Guillaume Hupin
Keyword(s):  

2019 ◽  
Vol 69 (1) ◽  
pp. 307-362 ◽  
Author(s):  
S. Ragnar Stroberg ◽  
Heiko Hergert ◽  
Scott K. Bogner ◽  
Jason D. Holt

The nuclear shell model has perhaps been the most important conceptual and computational paradigm for the understanding of the structure of atomic nuclei. While the shell model has been used predominantly in a phenomenological context, there have been efforts stretching back more than half a century to derive shell model parameters based on a realistic interaction between nucleons. More recently, several ab initio many-body methods—in particular, many-body perturbation theory, the no-core shell model, the in-medium similarity renormalization group, and coupled-cluster theory—have developed the capability to provide effective shell model Hamiltonians. We provide an update on the status of these methods and investigate the connections between them and their potential strengths and weaknesses, with a particular focus on the in-medium similarity renormalization group approach. Three-body forces are demonstrated to be important for understanding the modifications needed in phenomenological treatments. We then review some applications of these methods to comparisons with recent experimental measurements, and conclude with some remaining challenges in ab initio shell model theory.


2005 ◽  
Vol 14 (06) ◽  
pp. 821-844 ◽  
Author(s):  
IGAL TALMI

Shell model calculations of nuclear energies and wave functions of nucleons outside closed shells interacting by effective two-body forces yield good agreement with much experimental data. Many attempts have been made to calculate nuclear energies ab initio, by starting from some form of an interaction between free nucleons. Recent results of such calculations claim to obtain reasonable agreement with measured energies. These results, however, are obtained for wave functions which are very complicated. It is difficult to see how such wave functions are consistent with independent nucleon motion, the very essence of the shell model. In some of those calculations, 3-body interactions play a very important role. This is puzzling since nuclear energies are accurately obtained in shell model calculations by using only effective two-body interactions. In this paper, some examples of simple shell model calculations are reviewed. They exhibit good agreement with experiment and the apparent absence of the need for effective 3-body interactions.


Sign in / Sign up

Export Citation Format

Share Document