nuclear shell
Recently Published Documents


TOTAL DOCUMENTS

446
(FIVE YEARS 57)

H-INDEX

47
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Mustafa Mohammed Jabbar ◽  

In current study ,92Nb and 92Mo isotopes have been determined for calculating energy levels and electric quadrupole transition probabilities. Two interaction have been applied in this study are surface delta and modified surface delta interactions. The calculations have been achieved by using appropriate effective charges for proton and neutron as well as parameter length of harmonic potential. Computed results have been compared with the experimental values. After this comparison, energy and the transition probability values have a good agreement with the experimental values, also there are values of the total angular momentum and parity are determined and confirmed for some of the experimental energies, undetermined and unconfirmed experimentally. Theoretically, new values of quadrupole electric transition probabilities have been explored which have not been known in the experimental data.


2021 ◽  
Vol 66 (8) ◽  
pp. 643
Author(s):  
F.H. Obeed

The nuclear shell model has been applied to calculate the yrast energy levels, quadrupole transition probability (BE2), deformation parameter B2, rotational energy (hw), and inertia moment (20/h2) for the ground state band. The NuShellX@MSU code has been used to determine the nuclear properties of 56−62Fe isotopes, by using the harmonic oscillator (HO) model space for P (1f7/2), N (2p3/2), N (1f5/2), and N (2p1/2) orbits and (HO) interaction. The results are in good agreement with the available experimental data on the above nuclear properties and all nuclei under study. In addition, the back bending phenomenon has been explained by the calculations, and it has been very clear in 58,60,62Fe nuclei. It has also been confirmed and determined the most spins and parities of energy levels. In these calculations, new values have been theoretically determined for the most nuclear properties which were previously experimentally unknown.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Giovinazzo ◽  
T. Roger ◽  
B. Blank ◽  
D. Rudolph ◽  
B. A. Brown ◽  
...  

AbstractProton radioactivity was discovered exactly 50 years ago. First, this nuclear decay mode sets the limit of existence on the nuclear landscape on the neutron-deficient side. Second, it comprises fundamental aspects of both quantum tunnelling as well as the coupling of (quasi)bound quantum states with the continuum in mesoscopic systems such as the atomic nucleus. Theoretical approaches can start either from bound-state nuclear shell-model theory or from resonance scattering. Thus, proton-radioactivity guides merging these types of theoretical approaches, which is of broader relevance for any few-body quantum system. Here, we report experimental measurements of proton-emission branches from an isomeric state in 54mNi, which were visualized in four dimensions in a newly developed detector. We show that these decays, which carry an unusually high angular momentum, ℓ = 5 and ℓ = 7, respectively, can be approximated theoretically with a potential model for the proton barrier penetration and a shell-model calculation for the overlap of the initial and final wave functions.


Author(s):  
M Ashaduzzaman ◽  
DM S Zaman ◽  
T Akhter

Considering a hypothetical accident, the deposition of radio krypton (85Kr) has been studied that is released from TRIGA MARK-II reactor by its decay behavior. The measurement of radiological ground concentration leads to the study of the emission process of 85Kr nucleus, and the site-specific data related to this measurement have been analyzed later on. In this work, the radioactivity in the reactor core and release rate as well as Gaussian diffusion factor have also been considered. It is observed from the data analysis that the maximum concentration of 85Kr in ground is 1.115E+3 Bq/m2 in South (S) direction. Here, the nuclear binary fission has been presented with the greater probability of production of magic nuclei where the reactions found to be endoergic where a nuclear reaction occurs with the absorption of energy. Doubly magic nuclei like 4He, 16O, 40Ca, and 48Ca have also been identified as fission fragments that follow the nuclear shell closure. The results of this work will be an important guide in the study of radionuclide splitting into several nuclei as well as for accidental scinerio. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 7, Dec 2020 P 57-61


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Priyanka Choudhary ◽  
Anil Kumar ◽  
Praveen C. Srivastava ◽  
Toshio Suzuki

2021 ◽  
Vol 14 (1) ◽  
pp. 25-33

Abstract: In this paper, calculations of 90,91,92Y isotopes have been performed by application of nuclear shell model in the Gloeckner (Gl) model space for two different interactions (Gloeckner (Gl) and Gloeckner pulse bare G-Matrix (Glb) using Oxbash code. The energy levels are compared and discussed with experimental data and based on our results, many predictions about spins and parity were observed between experimental states, in addition to the predictions of low-energy spectra and B (E2; ↓) and B (M1; ↓)) transitional strengths in the isotopes 90,91,92Y. These predictions were not known in the experimental data. Keywords: Energy levels, Transition probabilities, Oxbash code.


2021 ◽  
Vol 66 (27) ◽  
pp. 3537-3543
Author(s):  
Zhi-Qiang Chen ◽  
Zhi-Huan Li ◽  
Jing Wu ◽  
Hong-Yi Wu ◽  
Xiang-Qing Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 225 ◽  
pp. 320-328
Author(s):  
Daolun Liang ◽  
Dekui Shen ◽  
Weidong Zhong ◽  
Yang Wang ◽  
Jianzhong Liu

Sign in / Sign up

Export Citation Format

Share Document