scholarly journals Gravitational Waves by a Particle in Circular Orbits around a Schwarzschild Black Hole: 5.5 Post-Newtonian Formula

1996 ◽  
Vol 96 (6) ◽  
pp. 1087-1101 ◽  
Author(s):  
T. Tanaka ◽  
H. Tagoshi ◽  
M. Sasaki
Universe ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Thomas Berry ◽  
Alex Simpson ◽  
Matt Visser

Classical black holes contain a singularity at their core. This has prompted various researchers to propose a multitude of modified spacetimes that mimic the physically observable characteristics of classical black holes as best as possible, but that crucially do not contain singularities at their cores. Due to recent advances in near-horizon astronomy, the ability to observationally distinguish between a classical black hole and a potential black hole mimicker is becoming increasingly feasible. Herein, we calculate some physically observable quantities for a recently proposed regular black hole with an asymptotically Minkowski core—the radius of the photon sphere and the extremal stable timelike circular orbit (ESCO). The manner in which the photon sphere and ESCO relate to the presence (or absence) of horizons is much more complex than for the Schwarzschild black hole. We find situations in which photon spheres can approach arbitrarily close to (near extremal) horizons, situations in which some photon spheres become stable, and situations in which the locations of both photon spheres and ESCOs become multi-valued, with both ISCOs (innermost stable circular orbits) and OSCOs (outermost stable circular orbits). This provides an extremely rich phenomenology of potential astrophysical interest.


2003 ◽  
Vol 67 (10) ◽  
Author(s):  
Steven Detweiler ◽  
Eirini Messaritaki ◽  
Bernard F. Whiting

2017 ◽  
Vol 26 (14) ◽  
pp. 1750169 ◽  
Author(s):  
A. Al-Badawi ◽  
M. Q. Owaidat ◽  
S. Tarawneh

The geodesic equations are considered in a spacetime that represents a Schwarzschild metric coupled to a uniform external electromagnetic (em) field. Due to the em field horizon shrinks and geodesics are modified. By analyzing the behavior of the effective potentials for the massless and massive particle we study the radial and circular trajectories. Radial geodesics for both photons and particles are solved exactly. It is shown that a particle that falls toward the horizon in a finite proper time slows down so that the particle reaches the singularity slower than Schwarzschild case. Timelike and null circular geodesics are investigated. We have shown that, there are no stable circular orbits for photons, however stable and unstable second-kind orbits exist for the massive particle. An exact analytical solution for the innermost stable circular orbits (ISCO) has been obtained. It has been shown that the radius of the ISCO shrinks due to the presence of the em field.


2009 ◽  
Vol 42 (5) ◽  
pp. 1287-1310 ◽  
Author(s):  
Juan Carlos Degollado ◽  
Darío Núñez ◽  
Carlos Palenzuela

Sign in / Sign up

Export Citation Format

Share Document