regular black holes
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 55)

H-INDEX

26
(FIVE YEARS 7)

2021 ◽  
Author(s):  
◽  
Alexander Simpson

<p>Various spacetime candidates for traversable wormholes, regular black holes, and ‘black-bounces’ are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static (time-independent as well as nonrotational), with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch – some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called ‘exponential metric’ – well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the ‘black-bounce’ to traversable wormhole case – where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter a. This notion of ‘blackbounce’ is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable ‘bounce’ into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing/ingoing EddingtonFinkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.</p>


2021 ◽  
Author(s):  
◽  
Alexander Simpson

<p>Various spacetime candidates for traversable wormholes, regular black holes, and ‘black-bounces’ are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static (time-independent as well as nonrotational), with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch – some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called ‘exponential metric’ – well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the ‘black-bounce’ to traversable wormhole case – where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter a. This notion of ‘blackbounce’ is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable ‘bounce’ into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing/ingoing EddingtonFinkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.</p>


2021 ◽  
Vol 136 (12) ◽  
Author(s):  
Saheb Soroushfar ◽  
Reza Saffari ◽  
Amare Abebe ◽  
Haidar Sheikhahmadi

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 418
Author(s):  
Alexander Marcus Simpson

A Regge–Wheeler analysis is performed for a novel black hole mimicker ‘the regular black hole with asymptotically Minkowski core’, followed by an approximation of the permitted quasi-normal modes for propagating waveforms. A first-order WKB approximation is computed for spin zero and spin one perturbations of the candidate spacetime. Subsequently, numerical results analysing the respective fundamental modes are compiled for various values of the a parameter (which quantifies the distortion from Schwarzschild spacetime), and for various multipole numbers ℓ. Both electromagnetic spin one fluctuations and scalar spin zero fluctuations on the background spacetime are found to possess shorter-lived, higher-energy signals than their Schwarzschild counterparts for a specific range of interesting values of the a parameter. Comparison between these results and some analogous results for both the Bardeen and Hayward regular black holes is considered. Analysis as to what happens when one permits perturbations of the Regge–Wheeler potential itself is then conducted, first in full generality, before specialising to Schwarzschild spacetime. A general result is presented explicating the shift in quasi-normal modes under perturbation of the Regge–Wheeler potential.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Javlon Rayimbaev ◽  
Pulat Tadjimuratov ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
Malika Khudoyberdieva

In this work, we have presented a detailed analysis of the event horizon of regular black holes (BHs) in modified gravity known as MOG, the so-called regular MOG BH. The motion of neutral particles around the BH has also been explored. The test particle motion study shows that the positive (negative) values of the MOG parameter mimic the spin of a rotating Kerr BH, providing the same values for the innermost stable pro-grade (retrograde) orbits of the particles in the range of the spin parameter a/M∈(−0.4125,0.6946). The efficiency of energy release from the accretion disk by the Novikov–Thorne model has been calculated, and the efficiency was shown to be linearly proportional to the increase of the MOG parameter α. Moreover, we have developed a new methodology to test gravity theories in strong-field regimes using precision data from twin-peaked quasiperiodic oscillations (QPOs) of objects calculating possible values of upper and lower frequencies. However, it is obtained that the positive MOG parameter can not mimic the spin of Kerr BHs in terms of the same QPO frequencies. We have provided possible ranges for upper and lower frequencies of twin-peak QPOs with the ratio of the upper and lower frequencies of 3:2 around regular MOG BHs in the different models. Moreover, as an example, we provide detailed numerical analysis of the QPO of GRS 1915+105 with the frequencies νU=168±5Hz and νL=113±3Hz. It is shown that the central BH of the QPO object can be a regular MOG BH when the value of the parameter is α=0.2844−0.1317+0.0074 and shines in the orbits located at the distance r/M=7.6322−0.0826+0.0768 from the central BH. It is also shown that the orbits where QPOs shine are located near the innermost stable circular orbit (ISCO) of the test particle. The correlation between the radii of ISCO and the QPO orbits is found, and it can be used as a new theoretical way to determine ISCO radius through observational data from the QPOs around various compact objects.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Astrid Eichhorn ◽  
Aaron Held

AbstractTo understand the true nature of black holes, fundamental theoretical developments should be linked all the way to observational features of black holes in their natural astrophysical environments. Here, we take several steps to establish such a link. We construct a family of spinning, regular black-hole spacetimes based on a locality principle for new physics and analyze their shadow images. We identify characteristic image features associated to regularity (increased compactness and relative stretching) and to the locality principle (cusps and asymmetry) that persist in the presence of a simple analytical disk model. We conjecture that these occur as universal features of distinct classes of regular black holes based on different sets of construction principles for the corresponding spacetimes.


Author(s):  
Monimala Mondal ◽  
Anil Kumar Yadav ◽  
Parthapratim Pradhan ◽  
Sayeedul Islam ◽  
Farook Rahaman

In this paper, we analyze the null geodesics of regular black holes (BHs). A detailed analysis of geodesic structure, both null geodesics and timelike geodesics, has been investigated for the said BH. As an application of null geodesics, we calculate the radius of photon sphere and gravitational bending of light. We also study the shadow of the BH spacetime. Moreover, we determine the relation between radius of photon sphere [Formula: see text] and the shadow observed by a distance observer. Furthermore, we discuss the effect of various parameters on the radius of shadow [Formula: see text]. Also, we compute the angle of deflection for the photons as a physical application of null-circular geodesics. We find the relation between null geodesics and quasinormal mode (QNM) frequency in the eikonal approximation by computing the Lyapunov exponent. It is also shown that (in the eikonal limit) the QNMs of BHs are governed by the parameter of null-circular geodesics. The real part of QNMs frequency determines the angular frequency, whereas the imaginary part determines the instability timescale of the circular orbit. Next, we study the massless scalar perturbations and analyze the effective potential graphically. Massive scalar perturbations are also discussed. As an application of timelike geodesics, we compute the innermost stable circular orbit (ISCO) and marginally bound circular orbit (MBCO) of the regular BHs which are closely related to the BH accretion disk theory. In the appendix, we calculate the relation between angular frequency and Lyapunov exponent for null-circular geodesics.


Sign in / Sign up

Export Citation Format

Share Document