scholarly journals Self-force of a scalar field for circular orbits about a Schwarzschild black hole

2003 ◽  
Vol 67 (10) ◽  
Author(s):  
Steven Detweiler ◽  
Eirini Messaritaki ◽  
Bernard F. Whiting
2004 ◽  
Vol 70 (12) ◽  
Author(s):  
Luz Diaz-Rivera ◽  
Eirini Messaritaki ◽  
Bernard Whiting ◽  
Steven Detweiler

2018 ◽  
Vol 33 (27) ◽  
pp. 1850159 ◽  
Author(s):  
Shad Ali ◽  
Xin-Yang Wang ◽  
Wen-Biao Liu

Christodoulou and Rovelli have shown that the interior volume of a Schwarzschild black hole grows linearly with time. The entropy of a scalar field in this interior volume of a Schwarzschild black hole has been calculated and shown to increase linearly with the advanced time too. In this paper, considering Hawking radiation from a d-dimensional charged black hole, we investigate the proportional relation between the entropy of the scalar field in the interior volume and the Bekenstein–Hawking entropy using the method of our previous work. We also derive this proportionality relation using Hamiltonian analysis and find a consistent result. We then investigate the proportionality coefficient with respect to d and find that it gradually decreases as the dimension of space–time increases.


2006 ◽  
Vol 21 (30) ◽  
pp. 6183-6190 ◽  
Author(s):  
M. R. SETARE

In this paper we compute the correction to the entropy of Schwarzschild black hole due to the vacuum polarization effect of massive scalar field. The Schwarzschild black hole is supposed to be confined in spherical shell. The scalar field obeying mixed boundary condition on the spherical shell.


Open Physics ◽  
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Chunrui Ma ◽  
Yuanxing Gui ◽  
Wei Wang ◽  
Fujun Wang

AbstractWe present the quasinormal frequencies of the massive scalar field in the background of a Schwarzchild black hole surrounded by quintessence with the third-order WKB method. The mass of the scalar field u plays an important role in studying the quasinormal frequencies, the real part of the frequencies increases linearly as mass of the field u increases, while the imaginary part in absolute value decreases linearly which leads to damping more slowly than the massless scalar field. The frequencies have a limited value, so it is easier to detect the quasinormal modes. Moreover, owing to the presence of the quintessence, the massive scalar field damps more slowly.


2011 ◽  
Vol 83 (6) ◽  
Author(s):  
Abhay G. Shah ◽  
Tobias S. Keidl ◽  
John L. Friedman ◽  
Dong-Hoon Kim ◽  
Larry R. Price

2019 ◽  
Vol 27 (3) ◽  
pp. 231-241
Author(s):  
Ivan M. Potashov ◽  
Julia V. Tchemarina ◽  
Alexander N. Tsirulev

We study the geodesics motion of neutral test particles in the static spherically symmetric spacetimes of black holes and naked singularities supported by a selfgravitating real scalar field. The scalar field is supposed to model dark matter surrounding some strongly gravitating object such as the centre of our Galaxy. The behaviour of timelike and null geodesics very close to the centre of such a configuration crucially depends on the type of spacetime. It turns out that a scalar field black hole, analogously to a Schwarzschild black hole, has the innermost stable circular orbit and the (unstable) photon sphere, but their radii are always less than the corresponding ones for the Schwarzschild black hole of the same mass; moreover, these radii can be arbitrarily small. In contrast, a scalar field naked singularity has neither the innermost stable circular orbit nor the photon sphere. Instead, such a configuration has a spherical shell of test particles surrounding its origin and remaining in quasistatic equilibrium all the time. We also show that the characteristic properties of null geodesics near the centres of a scalar field naked singularity and a scalar field black hole of the same mass are qualitatively different.


Sign in / Sign up

Export Citation Format

Share Document