circular orbit
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 97)

H-INDEX

38
(FIVE YEARS 6)

2021 ◽  
Vol 162 (6) ◽  
pp. 265
Author(s):  
Mason G. MacDougall ◽  
Erik A. Petigura ◽  
Isabel Angelo ◽  
Jack Lubin ◽  
Natalie M. Batalha ◽  
...  

Abstract We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3 day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M b = 20 ± 2 M ⊕ along with a radius of R b = 2.7 ± 0.1 R ⊕ from photometry. We detected an additional nontransiting planetary companion with M c sini = 10 ± 2 M ⊕ on a 16.8 day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b = 0.84 ± 0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >105 orbits yielded eccentricity constraints e b = 0.16 ± 0.03 and e c < 0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3 ± 0.9 g cc−1 as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 96
Author(s):  
Sumanta Chakraborty

The existence of a photon circular orbit can tell us a lot about the nature of the underlying spacetime, since it plays a pivotal role in the understanding of the characteristic signatures of compact objects, namely the quasi-normal modes and shadow radius. For this purpose, determination of the location of the photon circular orbit is of utmost importance. In this work, we derive bounds on the location of the photon circular orbit around compact objects within the purview of general relativity and beyond. As we have explicitly demonstrated, contrary to the earlier results in the context of general relativity, the bound on the location of the photon circular orbit is not necessarily an upper bound. Depending on the matter content, it is possible to arrive at a lower bound as well. This has interesting implications for the quasi-normal modes and shadow radius, the two key observables related to the strong field tests of gravity. Besides discussing the bound for higher dimensional general relativity, we have also considered how the bound on the photon circular orbits gets modified in the braneworld scenario, for pure Lovelock and general Lovelock theories of gravity. Implications of these results for compact objects were also discussed.


2021 ◽  
pp. 2150178
Author(s):  
Mithun Ghosh

The concept of dark matter (DM) hypothesis comes out as a result from the input of the observed flat rotational velocity. With the assumption that the galactic halo is pseudo-spheroidal and filled with charged perfect fluid, we have obtained a solution which has inkling to a (nearly) flat universe, compatible with the modern day cosmological observations. Various other important aspects of the solution such as attractive gravity in the halo region and the stability of the circular orbit are also explored. Also, the matter in the halo region satisfies the known equation of state which indicates its non-exotic nature.


Author(s):  
Monimala Mondal ◽  
Anil Kumar Yadav ◽  
Parthapratim Pradhan ◽  
Sayeedul Islam ◽  
Farook Rahaman

In this paper, we analyze the null geodesics of regular black holes (BHs). A detailed analysis of geodesic structure, both null geodesics and timelike geodesics, has been investigated for the said BH. As an application of null geodesics, we calculate the radius of photon sphere and gravitational bending of light. We also study the shadow of the BH spacetime. Moreover, we determine the relation between radius of photon sphere [Formula: see text] and the shadow observed by a distance observer. Furthermore, we discuss the effect of various parameters on the radius of shadow [Formula: see text]. Also, we compute the angle of deflection for the photons as a physical application of null-circular geodesics. We find the relation between null geodesics and quasinormal mode (QNM) frequency in the eikonal approximation by computing the Lyapunov exponent. It is also shown that (in the eikonal limit) the QNMs of BHs are governed by the parameter of null-circular geodesics. The real part of QNMs frequency determines the angular frequency, whereas the imaginary part determines the instability timescale of the circular orbit. Next, we study the massless scalar perturbations and analyze the effective potential graphically. Massive scalar perturbations are also discussed. As an application of timelike geodesics, we compute the innermost stable circular orbit (ISCO) and marginally bound circular orbit (MBCO) of the regular BHs which are closely related to the BH accretion disk theory. In the appendix, we calculate the relation between angular frequency and Lyapunov exponent for null-circular geodesics.


2021 ◽  
pp. 92-104
Author(s):  
Viktor K. Bilyk ◽  

Using only the laws of classical mechanics, a possible physical model of the structure of an atom as an element of a quantum computer—- a cube is proposed. The stable motion of an electron in an atom is substantiated, which is provided not only by the motion in the main elliptical or circular orbit but also by the additional motion of the electron around the main trajectory along the trajectory (helical line), the projection of which on the plane of the main orbit has the form of a cosine. It is shown why the trajectory of the electron is “smeared”, and the electron does not fall on the nucleus and, in general, what keeps it in the sphere of influence of the nucleus.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Takahisa Igata ◽  
Kazunori Kohri ◽  
Kota Ogasawara

Sign in / Sign up

Export Citation Format

Share Document