Shear velocity structure in the Aegean region obtained by joint inversion of Rayleigh and Love waves

2007 ◽  
Vol 291 (1) ◽  
pp. 159-181 ◽  
Author(s):  
E. E. Karagianni ◽  
C. B. Papazachos
2021 ◽  
Author(s):  
◽  
Yannik Behr

<p>We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand.</p>


Author(s):  
Sung-Ho Joh ◽  
Kenneth H. Stokoe, II ◽  
Il-Wha Lee ◽  
Tae-Ho Kang ◽  
Brent Rosenbld ◽  
...  

2021 ◽  
Author(s):  
◽  
Yannik Behr

<p>We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand.</p>


1998 ◽  
Vol 103 (B9) ◽  
pp. 21215-21232 ◽  
Author(s):  
Daphné-Anne Griot ◽  
Jean-Paul Montagner ◽  
Paul Tapponnier

2020 ◽  
Vol 177 (9) ◽  
pp. 4247-4269
Author(s):  
Dario Chieppa ◽  
Manuel Hobiger ◽  
Paolo Bergamo ◽  
Donat Fäh

Abstract The ambient vibration analysis is a non-invasive and low-cost technique used in site characterization studies to reconstruct the subsurface velocity structure. Depending on the goal of the research, the investigated depth ranges from tens to hundreds of meters. In this work, we aimed at investigating the deeper contrasts within the crust and in particular down to the sedimentary-rock basement transition located at thousands of meters of depth. To achieve this goal, three seismic arrays with minimum and maximum interstation distances of 7.9 m and 26.8 km were deployed around the village of Schafisheim. Schafisheim is located in the Swiss Molasse Basin, a sedimentary basin stretching from Lake Constance to Lake Geneva with a thickness ranging from 800 to 900 m in the north to 5 km in the south. To compute the multimodal dispersion curves for Rayleigh and Love waves and the Rayleigh wave ellipticity angles, the data were processed using two single-station and three array processing techniques. A preliminary analysis of the inversion results pointed out a good agreement with the fundamental modes of Rayleigh and Love waves used in the inversion and a quite strong disagreement with the higher modes. The impossibility to explain at the same time most of the dispersion curves was interpreted as the co-existence, within the investigated area, of portions of the subsurface with different geophysical properties. The hypothesis was confirmed by the Horizontal-to-Vertical spectral analysis (H/V) which indicated the presence of two distinguished areas. The observation allowed a new interpretation and the identification of the Rayleigh and Love wave fundamental modes and of the S-wave velocity profiles to be reconstructed for each investigated zone. It results in two S-wave velocity profiles with similar velocities down to 15 km deferring only in their shallow portions due to the occurrence of a low velocity zone at a depth of 50–150 m at the centre of the investigated area.


2019 ◽  
Vol 109 (4) ◽  
pp. 1194-1202
Author(s):  
Patrick Meyers ◽  
Daniel C. Bowden ◽  
Tanner Prestegard ◽  
Victor C. Tsai ◽  
Vuk Mandic ◽  
...  

Abstract Despite the theory for both Rayleigh and Love waves being well accepted and the theoretical predictions accurately matching observations, the direct observation of their quantifiable decay with depth has never been measured in the Earth’s crust. In this work, we present observations of the quantifiable decay with depth of surface‐wave eigenfunctions. This is done by making direct observations of both Rayleigh‐wave and Love‐wave eigenfunction amplitudes over a range of depths using data collected at the 3D Homestake array for a suite of nearby mine blasts. Observations of amplitudes over a range of frequencies from 0.4 to 1.2 Hz are consistent with theoretical eigenfunction predictions. They show a clear exponential decay of amplitudes with increasing depth and a reversal in sign of the radial‐component Rayleigh‐wave eigenfunction at large depths, as predicted for fundamental‐mode Rayleigh waves. Minor discrepancies between the observed eigenfunctions and those predicted using estimates of the local velocity structure suggest that the observed eigenfunctions could be used to improve the velocity model. Our results confirm that both Rayleigh and Love waves have the depth dependence that they have long been assumed to have. This is an important direct validation of a classic theoretical result in geophysics and provides new observational evidence that classical seismological surface‐wave theory can be used to accurately infer properties of Earth structure and earthquake sources.


Sign in / Sign up

Export Citation Format

Share Document