A new interpolation method in mesh reconstruction from 3D point cloud

Author(s):  
Yinghui Wang ◽  
Huimin Li ◽  
Xiaojuan Ning ◽  
Zhenghao Shi
2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Mingde Gong ◽  
Haohao Wang ◽  
Xin Wang

Road input can be provided for a vehicle in advance by using an optical sensor to preview the front terrain and suspension parameters can be adjusted before a corresponding moment to keep the body as smooth as possible and thus improve ride comfort and handling stability. However, few studies have described this phenomenon in detail. In this study, a LiDAR coupled with global positioning and inertial navigation systems was used to obtain the digital terrain in front of a vehicle in the form of a 3D point cloud, which was processed by a statistical filter in the Point Cloud Library for the acquisition of accurate data. Next, the inverse distance weighting interpolation method and fractal interpolation were adopted to extract the road height profile from the 3D point cloud and improve its accuracy. The roughness grade of the road height profile was utilised as the input of active suspension. Then, the active suspension, which was based on an LQG controller, used the analytic hierarchy process method to select proper weight coefficients of performance indicators according to the previously calculated road grade. Finally, the road experiment verified that reasonable selection of active suspension’s LQG controller weightings based on estimated road profile and road class through fractal interpolation can improve the ride comfort and handling stability of the vehicle more than passive suspension did.


GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Teng Miao ◽  
Weiliang Wen ◽  
Yinglun Li ◽  
Sheng Wu ◽  
Chao Zhu ◽  
...  

Abstract Background The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4–10 minutes to segment a maize shoot and consumes 10–20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


Sign in / Sign up

Export Citation Format

Share Document