scholarly journals Dynamically managed data for CPU-GPU architectures

Author(s):  
Thomas B. Jablin ◽  
James A. Jablin ◽  
Prakash Prabhu ◽  
Feng Liu ◽  
David I. August
Keyword(s):  
2021 ◽  
Author(s):  
Dylan Jude ◽  
Jay Sitaraman ◽  
Andrew M. Wissink
Keyword(s):  

2021 ◽  
Vol 68 (1) ◽  
pp. 238-249
Author(s):  
Xiaoxiao Liu ◽  
Mengjie Mao ◽  
Xiuyuan Bi ◽  
Hai Li ◽  
Yiran Chen
Keyword(s):  

2021 ◽  
Author(s):  
Emilie Macherel ◽  
Yuri Podladchikov ◽  
Ludovic Räss ◽  
Stefan M. Schmalholz

<p>Power-law viscous flow describes well the first-order features of long-term lithosphere deformation. Due to the ellipticity of the Earth, the lithosphere is mechanically analogous to a shell, characterized by a double curvature. The mechanical characteristics of a shell are fundamentally different to the characteristics of plates, having no curvature in their undeformed state. The systematic quantification of the magnitude and the spatiotemporal distribution of strain, strain-rate and stress inside a deforming lithospheric shell is thus of major importance: stress is for example a key physical quantity that controls geodynamic processes such as metamorphic reactions, decompression melting, lithospheric flexure, subduction initiation or earthquakes.</p><p>Stress calculations in a geometrically and mechanically heterogeneous 3-D lithospheric shell require high-resolution and high-performance computing. The pseudo-transient finite difference (PTFD) method recently enabled efficient simulations of high-resolution 3-D deformation processes, implementing an iterative implicit solution strategy of the governing equations for power-law viscous flow. Main challenges for the PTFD method is to guarantee convergence, minimize the required iteration count and speed-up the iterations.</p><p>Here, we present PTFD simulations for simple mechanically heterogeneous (weak circular inclusion) incompressible 2-D power-law viscous flow in cartesian and cylindrical coordinates. The flow laws employ a pseudo-viscoelastic behavior to optimize the iterative solution by exploiting the fundamental characteristics of viscoelastic wave propagation.</p><p>The developed PTFD algorithm executes in parallel on CPUs and GPUs. The development was done in Matlab (mathworks.com), then translated into the Julia language (julialang.org), and finally made compatible for parallel GPU architectures using the ParallelStencil.jl package (https://github.com/omlins/ParallelStencil.jl). We may unveil preliminary results for 3-D spherical configurations including gravity-controlled lithospheric stress distributions around continental plateaus.</p>


Author(s):  
Alejandro Villegas ◽  
Rafael Asenjo ◽  
Angeles Navarro ◽  
Oscar Plata ◽  
Rafael Ubal ◽  
...  

Author(s):  
Jorge Macías ◽  
Cipriano Escalante ◽  
Manuel J. Castro

Abstract. The present work is devoted to the benchmarking of the Multilayer-HySEA model using laboratory experiment data for landslide generated tsunamis. This first part of the work deals with rigid slides and the second part, in a companion paper, with granular slides. The US National Tsunami Hazard and Mitigation Program (NTHMP) has proposed the experimental data used and established for the NTHMP Landslide Benchmark Workshop, held in January 2017 at Galveston. The first three benchmark problems proposed in this workshop dealt with rigid slides, simulated as a moving bottom topography, that must be imposed as a prescribed boundary condition. These three benchmarks are used here to validate the Multilayer-HySEA model. This new model of the HySEA family consists of an efficient hybrid finite volume/finite difference implementation on GPU architectures of a non-hydrostatic multilayer model. A brief description of model equations, its dispersive properties, and the numerical scheme is included. The benchmarks are described and the numerical results compared against the lab measured data for each of them. The specific aim of the present work is to validate this new code for tsunamis generated by rigid slides. Nevertheless, the overall objective of the current benchmarking effort is to produce a ready-to-use numerical tool for real world landslide generated tsunami hazard assessment. This tool has already been used to reproduce the Port Valdez Alaska 1969 event.


Sign in / Sign up

Export Citation Format

Share Document